

Fast Track to MDX

Springer
London
Berlin
Heidelberg
New York
Hong Kong
Milan
Paris
Tokyo

Fast Track to

MDX

Mark Whitehorn, Robert Zare
and Mosha Pasumansky

13

Mark Whitehorn
University College Worcester, Worcester, UK

Robert Zare
Microsoft Corporation, Redmond, WA, USA

Mosha Pasumansky
Microsoft Corporation, Redmond, WA, USA

British Library Cataloguing in Publication Data
Whitehorn, Mark, 1953-

Fast track to MDX
1.OLAP technology 2.Data warehousing
I.Title II.Zare, Robert III.Pasumansky, Mosha
005.7'4
ISBN 1852336811

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act 1988, this
publication may only be reproduced, stored or transmitted, in any form or by any
means, with the prior permission in writing of the publishers, or in the case of
reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

ISBN 1-85233-681-1 Springer London Berlin Heidelberg
Springer is a part of Springer Science+Business Media
springeronline.com

© Mark Whitehorn 2002
Printed in the United States of America
Reprinted with corrections, 2003

The use of registered names, trademarks etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant laws
and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy
of the information contained in this book and cannot accept any legal responsibility or
liability for any errors or omissions that may be made.

Typeset by Ian Kingston Editorial Services, Nottingham
34/3830-543 Printed on acid-free paper SPIN 11018650

Reprinted with corrections, 2004
Reprinted, 2004

Contents

Foreword ix

Introduction xiii

Chapter 1 � Readme.doc – definitions you need to know 1
Sample data 1
Italics 1
Introduction 1
Dimensions, measures, members and cells 2
Cranking up the complexity 6
Hierarchies and aggregations 8
Levels 10
Naming conventions 11
Tuples and sets 13
Tuples and hierarchies 24
Sometimes measures behave like dimensions 24
Tuples revisited 25
Sets revisited 25
Measures revisited 25
Member properties 26
Summary 27

Chapter 2 � How MDX is used 29

Chapter 3 �MDX queries 35
Using MDX for queries 36
SELECT, FROM, ON COLUMNS, ON ROWS 39
WHERE 50
Summary 52

v

Chapter 4 �MDX syntax 53
Brackets, braces and the odd dot and comma 53

Chapter 5 �MDX expressions 58
Recap of cell naming 59
The concept of the current cell 61
Relative cell referencing 62
The practicalities – how to look at the data in a cube 65
1 Comparing values 69
The practicalities – how to create a calculated member 72
2 Comparing values between years 74
3 Calculating values to date 77
Summary 78

Chapter 6 � Navigating the hierarchy 80
Children 82
Parent 83
Nesting functions 84
Outside the limits 85
Reality check 85
Descendants 90
Reality check 93
Ancestor 94
Siblings 95
Cousin 96
Summary 96

Chapter 7 � Snapshot data analysis 99
The general problem 100
The general solution 101
The specific requirements 101
Why use Descendants? 108
Summary 109

Chapter 8 �Moving averages 110
A simple moving average 111
A more complex moving average 115
Summary 118

vi

Contents

Chapter 9 � Filters 119
Summary 126

Chapter 10 � Setting the default member 128
Defining a custom default member 129
Defining a different custom default member 133
Defining a fully dynamic custom default member 134
Default measures 136
Summary 137

Chapter 11 �Member properties and dimension security 138
Member properties 138
Dimension security 140
Using member properties and dimension security 141
Summary 150

Chapter 12 � Distinct Count 151

Chapter 13 � Parent–Child dimensions 156

Chapter 14 � Advanced data modeling – Custom Order,
Custom Rollup, Custom Members 162

Problem 1: Custom Order – ordering of members in a
hierarchy 164

Creating a custom order 168
Practical summary 172
Problem 2: Custom Rollup – when the cube’s default

behavior doesn’t do the right job 173
Practical summary 178
Problem 3: Custom Members – filling in missing

information 178
Practical summary 182
More about & 182
Summary 185

Chapter 15 � Further advanced data modeling techniques 186
Write-enabled dimensions and working with data in other

cubes 186

vii

Contents

Problem 4: Write-enabled dimensions – allowing users to add a
member to a dimension 187

Practical summary 192
Problem 5: Write-enabled dimensions – deriving values for a

member using formulae 193
Practical summary 196
Problem 6: Missing data – bringing it in from other cubes 196
Practical summary 199
Summary 200

Chapter 16 � Actions 201

Chapter 17 � Server side color coding 212
Summary 219

Chapter 18 �More about querying 220
Named sets 220
CROSSJOIN 221
NON EMPTY 226
From top to bottom 230
More than two dimensions – PAGES, SECTIONS, CHAPTERS 239
When logic and people collide... 241
Summary 250
Summary of the book 250

Appendix 1 � Sample files 251
Where and what are the sample files? 251
When to use which files 252
How to manage the files 253
Step-by-step guide to restoring an Analysis Services database

from a .CAB file 253
Data sources 256

Appendix 2 � ProClarity 258
Installing ProClarity and connecting it to a cube 258
Using ProClarity’s MDX Editor 261

Index 262

viii

Contents

Foreword

I love Business Intelligence. I love BI because it is all about becoming better.
BI is all about empowering us with knowledge and that knowledge is the
power to realize our full potential. As Zorge the spy said, “knowledge is
power”, and who doesn’t love to have the power to know, to understand
and to make intelligent decision? I do.

Since the dawn of the modern information system it was obvious that the
information accumulated in the machine is wasted if there is no way to
analyze it and learn from it. From as early as the 1950s, data analysis
systems and, later, decision support systems were designed, developed
and deployed with that intent. However, only in the last decade have these
systems become both reasonably affordable and mainstream and their
business impact indisputable.

The last decade has also seen the emergence of OLAP as the centerpiece of
the BI technologies. The OLAP multidimensional databases combine
incredible performance with unsurpassed analytical power and, in my
opinion, are the foundation of the BI platform.

While the performance differences between the multidimensional data-
bases and the traditional relational databases are very significant, Moore’s
law, which states that the hardware computing power doubles every 18
months, renders this advantage of the OLAP databases temporary. Sooner
or later, the raw computing power of the common server machines will be
sufficient to provide the performance needed for sophisticated analysis
even when the data is stored in a relational database.

However, where OLAP is likely to maintain a sustained advantage over the
relational database is in its analytical capabilities. Here the differences are
much deeper. The multidimensional data model is vastly superior to the
relational data model when it comes to the expressiveness of analytical
operations. The ability to have random access to any point in space, both
detailed data and aggregates, makes it a breeze to express calculations that
would otherwise take pages of SQL statements using a relational database.

This is also where MDX enters the picture and why MDX is so important.
MDX is the way to express the analytics in the OLAP database. Without

ix

MDX, all of the sophisticated calculations and smart analytics that we
expect of OLAP technologies are simply impossible.

Moreover, by making MDX into an industry standard, the language has
become the lingua franca of the BI world. Virtually every BI client applica-
tion and almost all OLAP servers have adopted MDX as their primary if not
exclusive query language. In a short period of 5 years MDX has become to
multidimensional databases what SQL is to relational databases. Can you
imagine where the technology of relational databases would have been
today without having a common query language?

Undoubtedly, Microsoft’s entrance into the BI market at the end of 1998 with
the release of OLAP Services in SQL Server 7.0 was the most influential
event in the young BI industry. Starting from early 1997 when I and the
small Plato development team assembled in Building 6 on the Redmond
campus our mission was clear: “BI to the masses.” We were tasked with
creating a very powerful yet easy to use OLAP Server that could be distributed
and assimilated on a mammoth scale and with unprecedented low prices.

While we looked at every release as the most important product release
and had high expectations from every one of the versions we shipped, it is
clear to us that bringing BI to the masses is a long journey that will take
almost a decade to complete. We have made huge progress in the four
years since we shipped the first release of OLAP Services. SQL Server 7.0
shook all previously known conventions of ease of use and prices in OLAP
products. Analysis Services in SQL Server 2000 captured the market share
leadership and became the most widely deployed OLAP Server ever. We
are very pleased with the accomplishments so far but we know that we still
have some way to go before BI is truly available to the masses.

We are now working on a major new release of Analysis Services under the
code name Yukon and by the time these lines are published some of the
dramatic innovations in the product will be known to the public. I view
Yukon as the release that will bring BI servers very close to the point of real-
izing the “BI for the masses” vision. MDX stays a critical component of the
platform and we are making a huge investment to make it even more
powerful as well as much easier to use. The power of MDX is the power of
analytics and what makes BI so important.

Mosha Pasumansky is the development lead for the MDX engine of
Analysis Services in Microsoft. Mosha and I go a long way back to the days
when we both worked for Panorama Software. From the moment I saw the
code that he produced it was clear to me that Mosha is a prodigy and was
one of the finest developers I have ever seen. Mosha took over from me the
responsibility for the calculation engine of the Panorama OLAP product
and he has been doing multidimensional calculations ever since.

x

Foreword

When Microsoft acquired Panorama and the development team relocated
to Redmond in January 1997 Mosha joined a very small task force that was
responsible for creating Tensor, the code name for the OLE DB for OLAP
specification. As part of that effort we defined the central component of the
standard – the MDX language. MDX carries a lot of Mosha’s genes in it. For
years Mosha has been an authority on the practical usages of MDX to solve
common business and analytical problems. Reading a book about MDX by
Mosha is reading a book from the guy who knows everything there is to
know about MDX.

Rob Zare joined the team for the late phases of SQL 2000 release. Astonish-
ingly, Rob joined us with almost no background in computing and was
hired to do some of the grunt testing work of the product; testing the user
interface to ensure that it was not defective in any obvious way. Very quickly
we discovered that Rob possesses explosive energy and a unique desire to
excel. While Rob was doing the grunt work during the day, superbly at that,
he moonlighted at building some impressive OLAP applications using the
technology and writing up a bunch of product improvement suggestions.
Very quickly Rob caught the attention of some of the senior members of the
team who started mentoring him in the various aspects of product design.
Soon afterwards, Rob got a double promotion and was reassigned to the
team as a “program manager,” a position that in Microsoft means a person
that designs and writes the product specifications.

Rob’s expertise is in building usable systems. He is responsible for some of
the key aspects of the user interface in the Yukon release and he designed
major portions of the MDX authoring tools. I am incredibly impressed with
Rob’s work and when Yukon is released I am sure that when you look at the
outstanding product design you’ll agree with me. Rob’s passion is in making
hard things easy and when you read this book I am sure you’ll appreciate
that MDX is presented in an easy to digest form thanks to Rob’s work.

Mark Whitehorn is the professional author of the trio. He is the one that
took Mosha’s and Rob’s ideas and formed them into an easy to read and
entertaining text. I am sure you’ll enjoy his write up as much as I did.

To truly understand modern Business Intelligence and to harness the
power of the OLAP platform one must understand MDX, and this book,
written by some of the creators of MDX, goes a long way in bringing the
reader into the MDX way of thinking.

Amir Netz
Product Unit Manager

SQL Server – Analysis Services
Microsoft Corp.

xi

Foreword

Introduction

This is where we try to convince you to buy the book and tell you what it
tries to do and what it doesn’t try to do. We also cover the housekeeping
information such as introducing you to the sample files, pointing you to a
web site for up-to-date information and generally setting the scene for the
book. If you have already bought the book and/or know what it does, feel
free to skip to Chapter 1 where the action starts. You can always come back
later for the housekeeping information.

Why should you read this book?

OLAP (On-Line Analytical Processing) is an extremely potent tool and
MDX (Multi-Dimensional eXpressions) is the key that unlocks the power of
OLAP. If you have started to use Analysis Manager to create and/or use
OLAP cubes then you’ll rapidly reach the point where knowledge of MDX
becomes useful, not to say essential. (OK, that’s the major selling pitch
over).

What is MDX?

Well, we suspect you have some kind of idea, otherwise the title of this
book would not have attracted you, but for the record:

MDX is a language that allows you to query OLAP cubes in a way reminis-
cent of that in which SQL allows you to query relational databases. In addi-
tion MDX expressions (as they are called) can be used to add business logic
to the cubes, to define simple and advanced security settings, to implement
color coding for purposes of exception alerting, to create custom member
roll-ups, custom level roll-ups, actions and so on – in other words, MDX is
used almost everywhere in the design of effective OLAP cubes. If you build
OLAP databases of any complexity then you are going to need MDX.

xiii

As an example, suppose that you have an OLAP cube that stores sales
information – units sold, unit price, costs etc. – for different products in
different stores. Study of this data alone can, of course, yield invaluable
information but business users are likely to want to perform additional
analysis using measures derived from the original data. They might, for
example, ask for a measure that shows profit ((Units Sold × Unit Price) –
Costs) and another that shows the percentage profit for each product.
Then they might ask to see profit plotted as a year-to-date value. For more
complex analyses they might want to see some of the measures plotted as
moving averages, or perhaps the percentage change in revenue for every
period when compared with the same period in the previous year.

Any and all of these can be added, on the fly, to existing cubes as what are
called ‘calculated measures’. Calculated measures are written in MDX.

Users can also ask for exceptional figures to be color coded (red for bad,
green for good); they can even ask for the data in the cube to interact with
the rest of their environment. For example, they might ask to be able to
right click on the name of a particular store in the OLAP cube and then to
have an option that will automatically fire up a browser and display a map
showing the store’s location.

All of this can be achieved with MDX, and everything described here and
more is demonstrated in this book.

Who should read this book?

The obvious (and correct) answer is “you”, assuming that you are an OLAP
developer and/or a DBA, but our experience is that MDX is also invaluable
for power OLAP users – that is, experienced business analysts.

In other words, it’s aimed at anyone who has been involved with OLAP for
some time and has hit situations where it is difficult to deliver what they, or
their users, want and who is interested in getting more information out of
their cubes.

Who are we?

Dr. Mark Whitehorn has been writing articles, white papers, columns and
books about computing since 1987; his column in Personal Computer World
is one of the longest-running database columns in the world. He special-
izes in database technology, data warehousing and OLAP and has written

xiv

Introduction

five books – two co-authored with Bill Marklyn, one of the original
designers of Microsoft’s Access. Their first book, Inside Relational Databases,
is a best seller (at least, for a database book!) and is now in its second
edition. On the academic side he is an honorary lecturer at the University
of Dundee where he lectures on advanced data handling; he is also an
associate senior research fellow at University College Worcester where he
lectures and also manages the data warehouse team. On the more practical
side he runs a consultancy company which specializes in database design
and data warehousing. In his spare time he teaches a database design
course and a data warehousing course for QA, the UK-based training and
consultancy company.

In his spare, spare time he rebuilds old cars. The current project (nearly
completed at the time of writing) is a car powered by a tank engine. For the
next project, lurking in the barn, there lies an old aircraft engine....

Robert Zare has been working on the Analysis Services team since he
joined Microsoft in 1999. Prior to joining Microsoft, he spent a bit of time
working at a much less interesting company. Prior to this, he was attending
school at the University of Washington and dreaming about someday
working for Microsoft. He was originally a member of the Analysis Services
test team where, amongst other things, he was responsible for reproducing
customer production environments and finding nasty bugs in Mosha’s
code. During the past two years he has been working as a Program
Manager responsible for the next generation of OLAP/MDX tools.

Mosha Pasumansky worked at Panorama Software Systems from its foun-
dation in 1993 as a developer on the desktop OLAP product called
Panorama. In 1996, Microsoft acquired the OLAP technology and develop-
ment team from Panorama and Mosha became a developer in the
Microsoft OLAP Services (later renamed Microsoft Analysis Services) team.
In 1997, he was one of the authors of the OLEDB for OLAP specification
which defined the MDX language. He also was the developer in charge for
the first implementation of MDX in the Microsoft OLAP Services 7.0
product which shipped in 1998. In 2000 Mosha worked on the XML for
Analysis specification and later became Microsoft’s representative in the
XML for Analysis council (www.xmla.org). In the XML/A council, among
his other responsibilities, Mosha works in the MDXML work group.
Currently he is the development lead of the Analysis Services engine team
and he is working on the next version of Microsoft Analysis Services.

This book came about because I (Mark) attended Tech Ed, Microsoft’s tech-
nical conference, at which Robert gave three excellent presentations on
MDX. I got talking to him afterwards and the end result is this book which
is based on those three talks. Somehow along the way we managed to get

xv

Introduction

Mosha involved in the project because we knew that as one of the initial
authors of MDX, his help would be invaluable. And we were right.

Bugs (sorry – readware anomalies)

Since Mosha actually helped to design MDX, and Robert is a Program
Manager responsible for OLAP/MDX tools, their knowledge of MDX can
be assumed to be reasonably definitive. While we were working on this
book, they supplied the sample files, the ideas and endless reams of helpful
comments; my job was to turn all of that into a book. Ultimately any errors
that appear are to be laid at my door because they will have been intro-
duced during my attempts to translate Robert and Mosha’s intimate
knowledge of MDX into what we hope is a readable book. Apologies in
advance.

If you happen across any bugs, I would be delighted if you would tell me
by visiting www.penguinsoft.co.uk where all known problems (and fixes)
will also be posted.

Acknowledgements

We are very grateful to the people at Microsoft who, as well as Robert and
Mosha, originally contributed to the talks on which this book is based.
They are:

Ariel Netz
Amir Netz
Thierry D’Hers

In addition, valuable proofreading work was carried out by Jane Hunt
(University College Worcester), Irina Gorbach (Microsoft) and Aaron Johal
(QA).

However, the person who contributed the most to the successful comple-
tion of this book was Mary Whitehorn who worked on it extensively, not
only proof-reading the entire book (several times) but actually writing
parts of it. You may wonder why she doesn’t appear as an author – so do
we, but it is her wish not ours: she is very modest.

xvi

Introduction

What do we cover?

In order to use MDX effectively, you need to be familiar with concepts such
as dimensions, measures, members, cells, hierarchies, aggregations, levels
and member properties. Given your background you may well already be
familiar with these, but we cover them in Chapter 1 just in case. We also
cover tuples and sets, which may be familiar terms from relational database
theory but have specific meanings in MDX.

In Chapters 2 to 4 we introduce MDX as a language and use MDX queries
to illustrate the basic syntax. The real power of MDX lies in expressions, so
they come next and, as the chapters progress, we gradually introduce you
to more and more ways in which MDX can be used.

In fact, some of the later chapters contain a great deal of information and
detail about Analysis Services with sometimes only a small amount of MDX
coding. On the face of it this seems weird (given that this is a book on MDX)
but in reality it is simply an excellent demonstration of the power of MDX.
By the time we reach these chapters we are no longer teaching how to write
basic MDX statements because by then you’ll have acquired that skill.
Instead we are trying to show you the enormous power that can be gained
from using MDX effectively. In other words, it isn’t how you write MDX
that really counts: it’s how, and where, you use it.

We have also tried to introduce MDX, not as an abstract computer
language, but as a real tool that will help you to make your cubes work
more effectively. (Indeed, the original talks on which this book was based
were called “Using MDX to Solve Business Problems”) so once we’ve intro-
duced the syntax of MDX, we illustrate the language by using it to solve
common business problems.

What we don’t cover

Just in case we’re giving the impression that this book does everything... it
doesn’t. We have tried to introduce you to MDX in the shortest possible
time, but we have always kept in mind that, given the fact that you are
reading a book on MDX, you are probably already a computer profes-
sional. So, for example, in Chapter 7 we introduce you to some of the
numeric functions in MDX such as Sum, Count and Avg. We show you how
to use them to provide a solution to a common problem and by the end of
the book we’ve covered the eight most frequently used numeric functions.
However, we won’t be showing you how to use the other 27 numeric func-
tions in MDX. For a start, some of them are relatively specialized, such as

xvii

Introduction

StdevP which “returns the population standard deviation of a numeric
expression evaluated over a set, using the biased population formula”. But
a more important point is that once you know how to use numeric func-
tions in general you can always look up any extra ones that you need in the
help system.

And it isn’t just specific functions that we’ve left out. I guarantee that there
is technical information that we know which we aren’t going to tell you. As
an example, at some stage we tell you that syntactically, members of a di-
mension can be referenced using square brackets, so a member called:

Sales

can be referenced like this:

[Sales]

What we aren’t going to tell you is that if a member already has square
brackets in its name, such as:

Penguin [Penguinsson]

you don’t just wrap it up in square brackets, you also have to add an extra
closing square bracket like this:

[Penguin [Penguinsson]]]

Why are we leaving you in the dark about this fascinating fact? Because it
just adds clutter to the book. In many cases square brackets aren’t essential
when naming a member anyway. If you eventually hit the problem, your
knowledge of MDX will (if we have done our work properly) enable you to
interpret the error message, delve into the help system and solve the
problem.

So, this isn’t a complete reference to MDX; as the title tries to suggest, it is a
fast track to learning MDX. It is designed to get you started quickly, and to
give you the essential framework around which you can fill in the detail.
Oh, and hopefully to show you that MDX is as easy to learn as any other
language and to convince you that it is actually fun to use.

Disclaimer

While we have made every effort to ensure that the content of this book is
accurate, we cannot take responsibility for any errors, glitches or disasters
you may encounter in your experience of the products we cover. The varia-
tion between hardware, software, networking and communications
renders it impossible to guarantee that something will work under all

xviii

Introduction

circumstances. Analysis Services and ProClarity run perfectly happily on a
stand-alone PC and this would be our preferred platform for learning
MDX. You can relax and experiment in an environment where there is no
danger of damaging a production system.

The ‘d’ word

Data: singular or plural? We know, correctly speaking, that datum is
singular and data is plural. We also know that it sounds funny when used
that way so we’ve gone with common usage and, with apologies to purists,
happily written “data is” throughout.

What’s on the CD-ROM

Sample Files

We have made extensive use of examples throughout the book, and we
encourage you to experiment with MDX rather than just read about it. To
make this process much easier, we have included on the CD-ROM most of
the sample OLAP cubes we used, as well as the data and the queries,
expressions etc. Appendix 1 holds details of all these files, where they are
and how to make use of them.

ProClarity

OLAP cubes are stores of data that can be managed, in Microsoft’s case, by
a tool called Analysis Manager. What Microsoft doesn’t supply is a free
graphical tool to allow end users to view and manipulate the data in an
OLAP cube with MDX.

xix

Introduction

� It is true that Microsoft supplies a sample MDX application.

However, this really is just a sample application with no graphical capabilities; you
are unlikely to be cruel enough to inflict it on real users.

xx

Introduction

�

With that in mind, we have provided on the CD-ROM a time-limited
version of ProClarity, which is just such a front-end tool. It comes with an
excellent graphical interface that allows users with zero knowledge to
browse and manipulate the data in an OLAP cube.

In addition, if you select View, MDX Editor from the main menu, you can see
the MDX that ProClarity is using to generate the current view of the data.
Even better, you can use this editor to create new MDX statements, or
indeed to cut and paste in the ones we have provided for you in the text files.

We think that ProClarity is an excellent tool for business users and also an
excellent tool to help you to learn MDX. Indeed, we’ve used it to illustrate
the book, and as a visualization tool to show you the effects of different MDX
queries and expressions. However, this does not mean that it is obligatory
for you to load and use ProClarity to understand the contents of the book.

In order to work through the examples, it is clearly essential to have a front-
end tool of some kind. If you are already using one that you like, we’d
recommend that you continue to use that. If not, we recommend that you
install ProClarity Professional and see how you get on with it.

Appendix 2 contains further details about installing and running
ProClarity.

xxi

Introduction

Chapter 1

Readme.doc – definitions
you need to know

Sample data

We used a sample set of data and a sample cube in order to produce the
screen shots that appear in this chapter. However, the cube was created
just to provide the screen shots and has very little merit as a real cube so we
haven’t, therefore, included it on the CD-ROM.

Italics

One of the problems inherent in writing a book like this is the need to tread
a thin line between defining terms in a readable way and ensuring that we
are as precise as possible. Sometimes we’ve tried to do this by giving a
general overview of a term and then giving a more formal definition. At
other times, we have felt that even a general description needs to be quali-
fied. In those cases we have often put the further qualifications in italics.
Anything that you find in italics can be read as an aside to the main discus-
sion and it should be possible to skip the italics on your first read through
and still get the overall picture.

� In fact, this applies as a general rule throughout the book. The comments in italics
are asides to the general information.

Introduction

We are going to use this chapter to define many of the terms that are used
in MDX. These will include:

1

�

• Dimensions
• Measures
• Members
• Cells
• Hierarchies
• Aggregations
• Levels
• Tuples
• Sets
• Member Properties

We briefly considered creating a glossary and defining each term individu-
ally, but it is difficult to maintain a sense of context in a glossary because all
of the entries have to stand alone. So instead we will describe the factors
that affect how a cube is constructed and use that to introduce the defini-
tions as we go along.

If you have been building OLAP cubes for any length of time, the defini-
tions of the first few terms are likely to be already firmly embedded into
your brain. If so, simply fast forward until you hit one that you don’t know.
If that means you end up jumping to Chapter 2, that’s fine.

What happens if you aren’t familiar with the terms? Well, the obvious answer
is to read through this entire chapter, making sure that you understand all the
terms before moving on to the actual coding. That works fine for some people
but it can work really badly for others. The ‘others’ are those who want to get
started, now! They want to feel a keyboard working under their finger tips.
They want to type code in, try it, see it fail, modify it, try it again, get it
working. If they then hit a term that they don’t understand, they are happy to
divert for a little background reading. We’ve written this chapter, therefore,
assuming that it will be read from beginning to end. But we’ve also tried to
write it in a reasonably modular way so that you can jump straight to Chapter
2 and get started and flip back when you need a definition. The terms appear
in the order listed above and there are headings to guide you, so you can scan
through the chapter until you see the one you want.

Dimensions, measures, members and cells

OLAP cubes are stores of multi-dimensional data. MDX is all about manip-
ulating OLAP cubes so in order to understand why MDX works in the way
it does, it is an excellent idea to get a firm grip on the way in which multi-
dimensional data is described, stored and defined.

2

Readme.doc – definitions you need to know

An OLAP cube is made up of Dimensions and Measures. In the figure
below, there are two dimensions, Time and Product. The Product dimen-
sion has four Members – Sardines, Anchovies, Herrings and Pilchards.
The Time dimension also happens to have four members (April to July).
There is one measure, UnitsSold, which is simply the number of cans of
each product sold in each month.

For this two-dimensional ‘cube’ you can think of the members of the
product dimension as being the labels for the columns of a worksheet. The
members of the time dimension then form the labels of the rows and the
values of the measure appear in the Cells.

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

April 16 23 12 4

May 14 12 23 6

June 34 19 19 8

July 17 22 14 4

You can, of course, reverse the rows and columns without disrupting the
meaning of the data.

UnitsSold
Time

Product April May June July

Sardines 16 14 34 17

Anchovies 23 12 19 22

Herrings 12 23 19 14

Pilchards 4 6 8 4

Clearly, each cell can be described in terms of one member from each dimen-
sion – thus we can see that the number of anchovies sold in June was 19. We
could say more formally that each value for the measure UnitsSold occurs at
a unique intersection between two members from the different dimensions.

� Expressing it in this way imparts exactly the same information, you just get more
street cred. for knowing the jargon.

It is easy for humans to visualize a cube like this that consists of two dimen-
sions and a single measure. There is no reason, however, why a cube
should be limited to one measure. As well as the unit sales figures shown

3

Readme.doc – definitions you need to know

�

above, you might also want to store, say, profit. There are several ways in
which we can represent (and you can visualize) this. You might be happy
picturing it like this:

UnitsSold/Profit
Product

Time Sardines Anchovies Herrings Pilchards

April 16 $40.00 23 $78.20 12 $23.88 4 $8.20

May 14 $35.00 12 $40.80 23 $45.77 6 $12.30

June 34 $85.00 19 $64.60 19 $37.81 8 $16.40

July 17 $42.50 22 $74.80 14 $27.86 4 $8.20

with the UnitsSold figure occupying the left of the cell and the profit occu-
pying the right.

Alternatively, you could think of each measure represented by a single
worksheet in a spreadsheet application, so you end up with a stack of
sheets showing the same dimensions but different measures, like this:

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

April 16 23 12 4

May 14 12 23 6

June 34 19 19 8

July 17 22 14 4

Profit
Product

Time Sardines Anchovies Herrings Pilchards

April $40.00 $78.20 $23.88 $8.20

May $35.00 $40.80 $45.77 $12.30

June $85.00 $64.60 $37.81 $16.40

July $42.50 $74.80 $27.86 $8.20

The way you choose doesn’t matter too much; the important thing is to
understand that a cube can have multiple measures – within reason as
many as you want.

� OK, so you want exact figures. A cube in Analysis Services can have up to 1,024
measures. For the record it can also have up to 128 dimensions, each with poten-
tially thousands or millions of members.

4

Readme.doc – definitions you need to know

�

As well as multiple measures, cubes can also have more than two dimen-
sions. Suppose that our company has multiple stores and we want to see
the UnitsSold figures broken down for individual stores. No problem, we
just add another dimension, called Store, to contain the information about
our outlets, looking like this:

(We’ve cut back to a single measure for this cube, just to keep the diagram
relatively simple.)

The cell that’s highlighted in the cube above sits at an intersection of the
cube’s three axes and each axis represents a dimension. The shaded cell
lines up with anchovies from the Product dimension (the x axis), May from
the Timedimension (the y axis) and Boston from the Storedimension (the z
axis). The value that we would find in this cell tells us the number of ancho-
vies sold in May in our Boston store.

Visualizing three dimensions is also relatively easy; we live in a three-
dimensional world and so we’re quite good at three-dimensional concepts.
However, OLAP cubes can have many more dimensions.

In our example, there could be an Employee dimension to tell us which
member of staff made the sales, and a Customer dimension indicating to
whom the sales were made. That’s five dimensions already. This is a good
time to stop trying the visualizations: mental pictures of two- and three-
dimensional data are excellent for building a basic understanding of what
OLAP cubes are all about but once we exceed three dimensions, it’s much
easier to rely on words rather than pictures.

5

Readme.doc – definitions you need to know

Talking about values in a five-dimensional cube turns out to be perfectly
straightforward: in May, our man Steve in the Boston store sold five cans of
anchovies to Katie for a profit of $12.50. In that simple sentence we used all
five dimensions (Time, Employee, Store, Product and Customer). We also
slipped in not one but two measures: UnitsSold (five cans of anchovies)
and Profit ($12.50).

However, as long as we keep the number of dimensions and measures
down to reasonable levels for the rest of this chapter, diagrams are still
really useful to help explain the terms used in OLAP cubes and hence in
MDX.

Cranking up the complexity

So far we have built up a set of words (Dimensions, Measures, Members,
Cells) and definitions that allow us to describe simple OLAP cubes. Do we
have to make it any more complex? Yes, because this is still too simple a
model for the sort of analysis that business users actually want to achieve.
Analysts and business people typically want to query their data in much
more complex ways and so OLAP cubes have to be capable of handling
that complexity. For instance, UnitsSold totals for each month of trading
might be required, or totals for each quarter of the current year, or even
totals for each year.

6

Readme.doc – definitions you need to know

Our current level of complexity can’t do this because it only caters for one
unit type of member in each dimension – for example, we can only repre-
sent months in the time dimension. In order to give users rapid access to
data totaled in this way, these quarterly and yearly totals need to be stored
in the OLAP cube as well. This in turn means that we need to handle some
of the dimensions as what are called hierarchies.

7

Readme.doc – definitions you need to know

Hierarchies and aggregations

While there is no obligation for all dimensions in a cube to be hierarchical,
experience suggests that many are in practice. Most cubes have a time
dimension, for example, and time is almost always hierarchical.

We can imagine the different totals – those for each year, each quarter and
each month – being held in worksheet-like grids. The total item UnitsSold
for each year for, say, the Boston store might look like this:

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

Year 2000 242 199 196 65

2001 232 201 219 75

2002 294 214 209 86

and for quarter, like this:

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

Quarter Q1 61 36 58 21

Q2 64 54 54 18

Q3 45 59 33 12

Q4 72 50 51 14

and like this for each month:

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

Month April 16 23 12 4

May 14 12 23 6

June 34 19 19 8

July 17 22 14 4

8

Readme.doc – definitions you need to know

We could also represent these values in a rather more complex grid like
this:

Sardines Anchovies

2000 Q3 July 17 22

Aug 16 18

Sept 12 19

Q3 total 45 59

2000 Q4 Oct 27 19

Nov 24 19

Dec 21 12

Q4 total 72 50

2000
total

242 199

These representations of what is going on inside a cube are, as you can see,
storing values derived by adding up, or aggregating, the original data in
the cube. In practice, aggregations are not the only values that can be calcu-
lated from the original data – for example, a cube can also hold values
expressed as percentages. However, no matter how they are calculated,
such values are usually referred to as aggregations.

� In fact, the term aggregation is very useful when discussing cubes, but it isn’t one
that is directly used in MDX. Aggregations are just an optimization that the un-
derlying storage engine uses to speed up the response of the cube. The presence or
absence of aggregations doesn’t change any of the results of MDX expressions or
queries.

In order to help us discuss hierarchies, it is useful to introduce the term
Level.

9

Readme.doc – definitions you need to know

�

Levels

Staying with a Time dimension, its hierarchy might look like this:

(In order to keep the diagram readable, only some of the members of the
month level are shown.)

Just as ogres have layers (see Shrek), hierarchies have levels. In the example
above, the Time dimension has four levels: All, Year, Quarter and Month.
Year, Quarter and Month are just as you’d expect and All is simply a handy
means of giving access to all the time data stored in the cube, for producing
the answer to questions like “what is the total number of items sold for the
period covered by data in the cube?” Most hierarchical dimensions have an
All level at the top.

The top of a hierarchy is always the level that encompasses the greatest
amount of information in the smallest number of members. Thus All is at
the top of the hierarchy and you read ‘down’ that hierarchy to Month at the
bottom. Or you can start with Month at the bottom (or ‘leaf’ level) and read
‘up’ to All at the top.

A leaf level is the level that’s at the bottom of a branch of the hierarchy, and
the term leaf node is used to mean a member of that leaf level. The leaf
analogy comes from the branching, tree-like shape of a hierarchy, albeit a
tree that’s upside-down.

Levels have members, and a member is a single item in a dimension. It will
sit at one of the levels in the dimension’s hierarchy. To continue with the
Time dimension example, at the Year level, you might have members called
2000, 2001 and 2002. At the Quarter level, there are likely to be members
called something like Q1, Q2, Q3 and Q4 and so on.

10

Readme.doc – definitions you need to know

As we’ve said, most dimensions are hierarchical – take the Store dimen-
sion, for example. Stores could be grouped together into states so that anal-
ysis can be performed between individual stores and also between
different states.

Naming conventions

Now we know that there are levels in a hierarchy and that each level has a
descriptive name, like All, State and Location in the diagram above. We
also know that each level contains members: Seattle and Leominster are
members of the Location level. What good does this information do us?
Well, once we start writing MDX code, we’ll need a way of identifying
precisely the specific members with which we want the code to work.

The most obvious way to identify a member is to start with the name of the
dimension and work downwards, specifying the members at each level in
the hierarchy until we reach required member. Working with the Store di-
mension shown in the diagram above, we’d indicate the Leominster mem-
ber like this:

[Store].[All].[Massachusetts].[Leominster]

This is, in fact, the method we will be using almost everywhere in this book.
It has the advantage of precision which outweighs its tendency towards
the verbose.

There is a temptation, however, to take short cuts with these long path
names. It’s clear that in our simple example above, we could use just the di-
mension name and then go straight to the name of the member we want,
like this:

[Store].[Leominster]

to point unequivocally to the Leominster member. This works here, but
such short cuts will only work with certain data and with certain naming
conventions.

11

Readme.doc – definitions you need to know

If you look back at the diagram that shows the hierarchy of the Timedimen-
sion, you’ll see that there will be two Octobers, one in 2000 and one in 2001.
Here we couldn’t take a short cut like:

[Time].[October]

and be sure we were pointing to exactly the right member.

With some dimensions it is relatively easy to impose a naming convention
that uses unique member names and is therefore amenable to the use of
short cuts. For example, the Time dimension could be re-structured so that
the members at the Quarter level were called 2000-Q1, 2001-Q2 and so on,
and the members at the Month level were called October-2000, May-2001
etc. The gain is that you can then reference them simply by dimension
name and unique member name:

[Time].[June-2001]

rather than:

[Time].[All].[2001].[Q2].[June].

� It seems only fair to point out that we can do this because we are using sample data.
In reality you can still be caught out by real data because there are cases where even
full path names don’t help. For example, suppose that you discover that there are
two places called Leominster in the state of Massachusetts. In that case even a full
path name:

[Store].[All].[Massachusetts].[Leominster]

wouldn’t distinguish between them.

This type of duplication is all too frequent in real data. English counties (which are
far smaller than US states) are littered with duplicates: there are two places called
Ashton in Cornwall, for example.

In order to solve this problem Analysis Services provides a means of identifying
members by means of their ‘member keys’ rather than by their member names –
there’s more about this in Chapter 14.

It is worth noting that, despite appearances, client tools such as ProClarity,
Excel etc. don't themselves ever create the names of the members that they
subsequently use in the MDX expressions or queries that they generate. In
fact, these tools are explicitly warned not to do so by the OLEDB for OLAP
specification. Instead, the server generates the unique names for them, and
it has all kinds of rules about how it can do this. Sometimes the server will
generate a name of the type that we have already discussed here –
dimension.name.name.name. For example:

12

Readme.doc – definitions you need to know

�

[Store].[All].[Washington].[Tacoma]

However, it can also be in the form dimension.level.name, for example:

[Store].[Location].[Tacoma]

or even sometimes something completely different. As far as the tools are
concerned, they never try to make sense out of the names. Instead they let
the user point and click to the objects they want in the interface and the
tool uses the names it has been given for those objects to generate the MDX
that is then sent back to the server as a query or an expression. Hand-
written MDX, on the other hand, can use whatever the person writing it
feels like at the time. As a general rule we recommend using fully qualified
names, such as dimension.name.name.name.name.

Tuples and sets

We need to define these terms accurately because they are of fundamental
importance to an understanding of MDX. In later chapters you are going to
meet expressions and functions that require you to give them, very specifi-
cally, a set or a tuple. However, we are quite well aware that defining the
terms ‘Tuple’ and ‘Set’ has caused problems in the past; at least with refer-
ence to MDX.

Part of the problem is that, although these terms can be defined very accu-
rately and succinctly in mathematical terms, defining them in more human
terms tends to lead to very impenetrable definitions. This is because
human language is so imprecise when compared to mathematics.

What we are going to do is to define them several times. The first defini-
tions won’t be totally accurate but will hopefully give a good feel for the
important distinctions between tuples and sets. Then we’ll add some more
information and use examples to fill in some of the finer detail.

13

Readme.doc – definitions you need to know

Tuples

� We’ll go back to the simple three-dimensional model with a single measure that we
used earlier.

The highlighted cell sits at an intersection of the cube’s three axes and each
axis represents a dimension. The cell lines up with Anchovies from the
Product dimension (the x axis), May from the Time dimension (the y axis)
and Boston from the Store dimension (the z axis). The value that we would
find in this cell tells us the number of anchovies sold in May in our Boston
store.

We can express this description of the cell more neatly in pseudo-MDX as:

([Product].[Anchovies],[Time].[May],[Store].[Boston])

Here we are using the names of three members to point to the cell. In fact,
the order in which we list the members is immaterial; we could equally well
point to the cell like this:

([Product].[Anchovies],[Store].[Boston],[Time].[May])

Either way, we have a precise and unequivocal description of the location
of the cell in the OLAP cube. In essence what we have done here is to iden-
tify a cell using its co-ordinates. The co-ordinates are members – one taken
from each of the three dimensions. The name for this collection of co-ordi-
nates is a tuple.

14

Readme.doc – definitions you need to know

�

It is important to distinguish here between the tuple and the cell contents.
One way to do so is to try to find an analogy from a more familiar system – a
spreadsheet.

In this worksheet, cell C4 contains the value 44. The value is located at the
intersection of C and 4. So 44 is the value that the cell contains and “C4” is
the spreadsheet equivalent of a tuple in an OLAP cube.

� So how are you supposed to pronounce ‘tuple’? Answer – whatever. Arguments
rumble on as to whether it rhymes with couple or pupil. It’s possible that the former
is more common in the US and the latter favored in the UK. The Brits would argue
that, if it rhymes with couple, it should be spelt tupple. The Americans would coun-
ter with “OK, but if it rhymes with pupil, why isn’t it spelt tupil?” In my opinion
the only certainty is that anyone both loud and confident about the ‘correct’ pro-
nunciation is wrong.

Since a tuple points to a single cell, it follows inexorably that each member
in the tuple has to be from a different dimension. To put that another way,
you can never have a tuple which has two or more members taken from a
single dimension. Why not? Well, if you do, it is inevitable that the ‘tuple’
that you create will end up pointing to more than one cell. For example:

(([Product].[Anchovies],[Time].[May],[Store].[Boston]),
([Product].[Sardines],[Time].[May],[Store].[Boston]))

has two members from the Product dimension and therefore can’t be a
tuple because it is pointing to more than one cell, as the following diagram
shows.

15

Readme.doc – definitions you need to know

�

So a first definition of a tuple could be:

A tuple is the intersection of one (and only one) member taken from each of the di-
mensions in the cube. A tuple identifies a single cell in the multi-dimensional
matrix.

Sets

Given the above definition of a tuple, a set becomes very easy to define
because a set is simply a collection of tuples which have been defined using
the same dimensions.

What do we mean by ‘defined using the same dimensions’? Well, take
these two tuples.

([Product].[Anchovies],[Time].[May],[Store].[Boston])
([Product].[Sardines],[Time].[May],[Store].[Boston])

Both have exactly one member from the Time, Store and Product dimen-
sions, so they have been defined using the same dimensions.

� In fact, we can say that they have the same ‘dimensionality’.

16

Readme.doc – definitions you need to know

�

So these two tuples, taken together, form a set. Although we go into the ex-
act syntax in Chapter 4, it is worth knowing at this point that in practice, the
set has to be wrapped up in curly braces like this:

{([Product].[Anchovies],[Time].[May],[Store].[Boston]),
([Product].[Sardines],[Time].[May],[Store].[Boston])}

So we can define a set like this:

A set is a collection of tuples with the same dimensionality.

In essence this definition is saying that a set is simply a collection of tuples;
nothing too complicated there. However, in the interests of accuracy we
need to extend the definition slightly because, as it stands, this definition
implies that a set always has to contain two or more tuples. While that is
often the case, it is also true that the collection of tuples in a set can also be
one tuple or even zero tuples.

This may sound weird at first. You may want to ask “But if a set contains
only a single tuple, doesn’t that make the set a tuple?” You might even
want to ask “How can a set possibly contain no tuples?” These are both fair
questions.

The answer is that one of the reasons for defining sets in the first place is
that some MDX expressions are built to expect multiple tuples. For
example, there is a function called AVG (which appears in Chapter 7) which
will work out averages for you. Clearly, you usually want to average more
than one value so the AVG function expects to be passed a set rather than a
tuple (in fact, it demands to be passed a set). However, we also want it to
work under conditions when it is passed a tuple (which will point to a
single cell) and even when it is passed an empty set. So the function is
designed to expect a set, and a set is defined as being a collection of zero,
one or more tuples. This means that our first definition can be extended to
read as follows:

A set is a collection of tuples with the same dimensionality. It may have more than
one tuple, but it can also have only one tuple, or even have zero tuples, in which case
it is an empty set.

So, to summarize so far:

• A tuple points to a single cell, and cannot include more than one member
from any particular dimension.

• A set is a collection of tuples.

17

Readme.doc – definitions you need to know

Exploring the differences between tuples and sets

OK, given the definitions that we currently have, and bearing in mind that
we are still using pseudo MDX, is the following a tuple or a set?

([Time].[May], [Store].[Boston], [Product].[Anchovies])

Answer – a tuple.

OK, now what about these two?

1 ([Store].[Boston], [Product].[Anchovies])

2 {([Time].[April], [Store].[Boston], [Product].[Anchovies]),
([Time].[May], [Store].[Boston], [Product].[Anchovies]),
([Time].[June], [Store].[Boston], [Product].[Anchovies]),
([Time].[July], [Store].[Boston], [Product].[Anchovies])}

Well, one big clue is that we have wrapped curly braces around the second
one, but ignoring those briefly, it is worth trying to work out in your own
mind the differences and similarities between these two.

We could argue that both are pointing to the same collection of cells in the
cube:

The first statement:

([Store].[Boston], [Product].[Anchovies])

is made up of two members, one from the Store dimension and the other
from the Productdimension. Since it doesn’t give us any information about
the third dimension, we will (for the present) assume no restriction for that
dimension.

18

Readme.doc – definitions you need to know

The second statement:

{([Time].[April], [Store].[Boston], [Product].[Anchovies]),
([Time].[May], [Store].[Boston], [Product].[Anchovies]),
([Time].[June], [Store].[Boston], [Product].[Anchovies]),
([Time].[July], [Store].[Boston], [Product].[Anchovies])}

actively points to the four cells shown above.

So, as we have said, the two appear to be pointing to the same set of cells.
However, the first statement is a tuple, the second is a set. How can we be
so sure?

Well, the second statement is clearly a set because even our simple defini-
tion of set tells us that “A set is a collection of tuples with the same
dimensionality”. This statement has four tuples. Each of these four tuples
has exactly one member from the Time, Store and Product dimensions, so
these tuples have the same dimensionality. Therefore it is clearly a set.

The first statement conforms to part of the definition of a tuple, the bit that
reads “A tuple is the intersection of several members each taken from a
different dimension in the cube.”

It describes the intersection of two members and each is taken from a
different dimension. However, it appears to be failing the first part of our
definition, the bit about “A tuple always identifies a single cell in the multi-
dimensional matrix.” But appearances can be deceptive!

And this is crunch time, this is where people have trouble with the defini-
tion of a tuple. So, let’s be quite clear about what we are trying to say. This:

([Store].[Boston], [Product].[Anchovies])

is a tuple. The over-riding reason that we know it is a tuple is because it
doesn’t use more than one member from the same dimension. This may
sound like a very fine distinction, but it isn’t.

19

Readme.doc – definitions you need to know

Think about it this way. Suppose that you have a three-dimensional cube
like this:

You then define one member from a dimension, say:

([Product].[Anchovies])

With that one statement you have trimmed the cube down to this:

20

Readme.doc – definitions you need to know

Adding another member from another dimension further trims the cube:

([Product].[Anchovies],[Store].[Boston])

Each time you add another member from another dimension you are
further refining what you want from the cube and, if you choose enough
members, each from a different dimension, you will inevitably end up with
a single cell.

Now suppose that we start off with this:

([Store].[Boston], [Store].[Seattle])

21

Readme.doc – definitions you need to know

Once again we have only used a single dimension to restrict the cells in
which we are interested, but already we are inevitably committed to
ending up with a set rather than a tuple, and the reason why that is so is
hopefully becoming clearer. No matter what members we use from the
other dimensions, and even if we use members from every available
dimension, we are going to end up with more than one cell because we
started with more than one member from a given dimension.

So even if we restrict this with one member from each of the other two
dimensions:

([Store].[Boston], [Store].[Seattle],([Time].[April],
[Product].[Anchovies])

we still end up with two cells:

So, as we said earlier, this:

([Store].[Boston], [Product].[Anchovies])

is a tuple. We know it is a tuple, not because it currently points to a single
cell, but because it doesn’t use more than one member from the same di-
mension and therefore has the potential to point to a single cell.

22

Readme.doc – definitions you need to know

Tuples don’t have to use a member from every
dimension

Now, in case this is making it all sound too complicated, we haven’t actu-
ally changed the original definition of tuple very much. Initially we said:

A tuple is the intersection of one (and only one) member taken from each of the di-
mensions in the cube. A tuple identifies a single cell in the multi-dimensional
matrix.

This definition assumes that we are defining a tuple using one member
from every dimension. If we do use one member from every dimension it is
inevitable that our tuple will identify just one single cell. But we don’t have
to use a member from every dimension.

So now we are refining that definition to read as:

A tuple is the intersection of one (and only one) member taken from one or several of
the dimensions in the cube. A tuple identifies (or has the potential to identify) a sin-
gle cell in the multi-dimensional matrix.

We are sticking to the original point that a tuple is always defined by a
single member from any given dimension; all we are dropping is the
requirement that you have to use each and every dimension to define the
tuple.

So the following are all tuples:

[Product].[Anchovies],[Time].[May],[Store].[Boston]
[Product].[Anchovies],[Time].[May]
[Product].[Anchovies]
[Time].[May]
[Product].[Anchovies],[Store].[Boston]

But do these tuples still point to a single cell?

Yes, because all dimensions have what can be considered to be a ‘default
member’. So if in an MDX query you don’t specify a member for a partic-
ular dimension, then the default member for that dimension is implied.

So, if this tuple were used in a query:

([Store].[Boston], [Product].[Anchovies])

a ‘default member’ will be used from each of the missing dimensions, effec-
tively turning the tuple into something like this:

([Store].[Boston], [Product].[Anchovies],[Time].[May])

to ensure that the tuple does point to a single cell.

23

Readme.doc – definitions you need to know

� So, where does the ‘default member’ come from? In practice, MDX will use the so-
called current member (which may be the default member if the user has not sliced
the data). We only mention this here for completeness; when we introduce queries
and expressions in later chapters, this will hopefully make more sense.

The take-home message from all of this is that you often don’t have to use a
member from every dimension when specifying a tuple.

Tuples and hierarchies

Next, it is worth discussing how tuples work with hierarchies.

Suppose that our cube has a hierarchical structure for Time. We have levels
called Month, Quarter and Year and we have data for the years 1999, 2000
and 2001.

Is a pseudo-MDX expression like this:

([Product].[Anchovies],[Store].[Boston],[Time].[2000])

still a tuple? The acid test is “Does it still point to a single cell?” The answer
is that it does because we have an aggregation member called 2000 and so
somewhere in the cube there will be a single cell that holds the value for the
total number of anchovies sold in Boston during the year 2000.

� You may well be aware that when you create a real cube not all of the aggregations
are necessarily pre-calculated. So you might begin to think “If the aggregation has
not been pre-calculated, does this affect whether this is a tuple?” Again it is a good
question; the answer is that this is still a tuple. Think of it this way. In MDX a cell is
considered to be an intersection of a set of co-ordinates, not a physical object. There-
fore aggregated cells always exist, because the intersections of the co-ordinates al-
ways exist. Some cells will be materialized (that is they will already have been
calculated and stored) and some cells will have to be computed on the fly, but they
always exist as far as MDX is concerned.

Sometimes measures behave like dimensions

What happens if we have essentially the same cube but with three
measures, say UnitsSold, Profit and Price? Well, it doesn’t make too
much difference because the measures are going to act, in this case, pretty
much like a dimension with three members.

24

Readme.doc – definitions you need to know

�

�

So, we can specify the measure we want in just the same way as we specify
a member from a dimension:

([Product].[Anchovies],[Store].[Boston],[Time].[May],
[Measures].[Profit])

Again, if you don’t specify the measure, the expression will use the default
measure (these are discussed at the end of Chapter 10).

So be aware that sometimes you’ll hear people talking about measures as if
they are dimensions. For example, “Try that query again, but this time use
the UnitsSold member from the measures dimension.” This is perfectly
normal and, when you think about it, makes perfect sense. In fact, it
explains why some of the GUI tools used to manipulate OLAP cubes show
the measures as just another dimension.

Tuples revisited

So, hopefully, we’ve managed to convince you that a tuple is a relatively
easy concept but just for completeness, here is a more formal definition.

A tuple is defined as an intersection of exactly a single member from each dimension
(hierarchy) in the cube. For each dimension (hierarchy) that is not explicitly refer-
enced, the current member is implicitly added to the tuple definition. A tuple always
identifies (or has the potential to identify) a single cell in the multi-dimensional ma-
trix. That could be an aggregate or a leaf level cell, but nevertheless one cell and only
one cell is ever implied by a tuple.

Sets revisited

Our earlier definition of set:

A set is a collection of tuples with the same dimensionality. It may have more than
one tuple, but it can also have only one tuple, or even have zero tuples, in which case
it is an empty set.

still stands up to reasonable scrutiny.

Measures revisited

As we said when talking about tuples, there are times when we treat
measures as if they were dimensions, and this is perfectly valid. However,

25

Readme.doc – definitions you need to know

in case this leaves you with the impression that there is no difference, it
seems worth stressing how measures and dimensions do differ.

For a start, measures are frequently numerical and, equally frequently,
those numbers are continuously variable (they can contain any possible
numerical value between two limits). Sales figures, prices, gross profit – all
these values come from a continuously variable range of numbers.

Measures have special properties attached to them, for example Data Type,
Format String etc.

Finally, measures are not hierarchical.

Dimensions, on the other hand, are typically character-based and the
values they contain are often discontinuously variable (the level Year can
contain 2001 and 1999 but not 1999.5).

Member properties

So, is all continuously variable data likely to end up as a measure? In the
main, the answer is ‘yes’, but keep an eye out for exceptions. There are
some pieces of data that look at first glance like just the sort of data you’d
store as a measure. Take a value such as the floor area of each store: each
value will be continuously variable and numeric, so it’s a measure, right?
Well, no.

Think about a measure – it is stored at the intersection of the members of
the dimensions in the cube. Suppose that the Boston store has a floor area
of 21,000 sq. ft. If we enter this as a measure, at the intersection of Boston, Q1
and Anchovies we’ll have a value of 21,000. At the intersection of Boston, Q2
and Anchovies we’ll find the value 21,000. And at Boston, Q3, Herrings...
we’ll find... err... 21,000 again. In other words, the value we have for floor
area doesn't depend at all on the Time dimension or on the Product dimen-
sion. But measures are supposed to depend on all of the dimensions. So the
bottom line is that a measure is not the appropriate place to store data like a
store's floor area, nor for any data that depends upon the member in only
one dimension for its value.

26

Readme.doc – definitions you need to know

What do we do instead? Members have Properties and the role of a prop-
erty is to hold information about a member. Our floor area data fits into this
category beautifully: it is information about one particular member. In this
case, each member is a store and each store's floor area is a piece of informa-
tion that has relevance only to that particular store.

Summary

If you are new to this whole dimensional data business, there's a great deal
of new information here so a quick summary of the main points that we've
covered may help.

Data in an OLAP cube is organized into dimensions and measures:

UnitsSold
Product

Time Sardines Anchovies Herrings Pilchards

April 16 23 12 4

May 14 12 23 6

June 34 19 19 8

July 17 22 14 4

This simple cube has two dimensions – Product and Time. Both have four
members and there is one measure – UnitsSold; so the cube has 16 cells.

The members of a dimension can be (and often are) organized into hierar-
chies; for example, time may be organized into several levels such as
months, quarters and years. A cell which was the intersection of, say,
Sardines and Quarter2 would contain the aggregated values for sardines
from April, May and June.

We need to extract subsets of data from OLAP cubes and for this we use
either tuples or sets. A tuple is the intersection of one or more members,
each of which is taken from a different dimension in a cube. A tuple always
identifies a single cell in the multi-dimensional matrix.

A set is a collection of tuples. That collection is usually composed of
multiple tuples but can be made up of one or even zero tuples. So, in prac-
tice, a set can identify zero, one or more cells in the multi-dimensional
matrix.

We sometimes want to store additional data in an OLAP cube but we find
that it can’t be stored as a measure because it cannot logically be placed at
the intersection of all the dimensions. Instead it logically relates to

27

Readme.doc – definitions you need to know

members of a single dimension. For example, the floor area of a store
depends simply upon which store we are considering, it doesn't depend
upon the month, nor on the product. Such information isn't stored as a
measure; it is stored as a member property of the appropriate member.

28

Readme.doc – definitions you need to know

Chapter 2

How MDX is used

MDX is the key to unlocking all of the advanced capabilities of Analysis
Services, so once you go beyond building basic cubes and want to add busi-
ness logic to the cube, you really start to need MDX.

So, is MDX like anything else you are likely to have used? Well, in case
you’ve never seen MDX in the raw, here’s a quick example of an MDX
query:

SELECT
{ [Customers].[All Customers] } ON COLUMNS ,
{ [Measures].[Sales] } ON ROWS
FROM [Sales_MDX1]
WHERE [Time].[1998]

The immediately obvious comparison is with SQL. For a start, both lan-
guages have names that are TLAs (Three Letter Acronyms) and both are
languages designed specifically for querying data structures. They both
even use SELECT, FROM and WHERE, which means that the queries you can
write with them sound similar.

So MDX is pretty much like SQL? No, despite the apparent similarities, the
languages differ in several significant ways.

For a start, SQL isn’t simply a query language (despite its name); it also
has a whole raft of commands devoted to defining the data structures
themselves. In other words you can use all sorts of commands such as
CREATE, DROP, INSERT, DELETE etc. to construct and modify your table
structures and data. While it is true that you can create local and session
OLAP cubes with MDX commands, most general manipulation of the
underlying structures is done via the DSO (Decision Support Objects)
interface.

On the other hand, MDX can be used for things that SQL can’t directly –
like defining advanced security settings, custom member roll-ups, custom

29

level roll-ups, actions and so on. (These are all covered during the course of
this book.)

Now think about the internal structure of OLAP cubes, as described in
Chapter 1 – all those levels, dimensions, hierarchies etc. This is very
different from the simple, two-dimensional table structure used by the
relational model. SQL doesn’t know anything about hierarchies; it doesn’t
understand the difference between a level and a member, and it knows
nothing of a member’s properties. MDX does. It knows about all these and
more.

The differences go even further. As you are likely to be aware, SQL bends
over backwards to take absolutely no notice whatsoever of where a partic-
ular row of data happens to be located in a table. You cannot, for example,
issue a command in standard SQL which says “Find me the row that relates
to Mr. Smith and then return the row beneath that one.” SQL will quite
happily find you the row that relates to Mr. Smith but it has no concept of
where that row is in the table and hence it doesn’t know which rows are
above or below it.

� There are times when the concept of row position is very useful to solve certain prob-
lems, and so some implementations of relational databases provide “cursors” that do
allow this sort of positional manipulation. However, cursors aren’t part of standard
SQL so they immediately, grossly and permanently offend SQL purists.

MDX on the other hand is built to run against an OLAP cube – an environ-
ment where position is all important. The data therein is very sensitive to
both structure and position. For example, if I tell you that I am looking at
the figures for Q3 2002 and want to compare them with the figures for the
previous quarter, you and I intuitively know that the previous quarter is
Q2 2002 – there is no sensible alternative. And, impressively, MDX knows it
intuitively as well. This is more subtle than it first appears, because it is also
level sensitive. If I am looking at the figures for July 2002 then the previous
figure is no longer Q2 2002, it is June 2002. MDX is stuffed full of functions
that are sensitive to the position of the data, a characteristic which is totally
lacking in SQL.

The bottom line is that MDX doesn’t really bear much relation to SQL at all,
it just happens to look that way when you first see it. That means it’s going
to be a pain to learn, does it? No, it’s fun. In fact, much of the attraction is
that it is different and we can do so many fun things with it.

30

How MDX is used

�

So, in broad terms what can we do with MDX?

There are two primary uses of MDX:

• You can use it to write queries: these are full statements with a SELECT, a
FROM and a WHERE which, at least superficially, look pretty much like que-
ries written in SQL.

• You can use it to write expressions: snippets of code that can be used for
all sorts of purposes such as defining a set, returning one or more values
and defining calculated members.

MDX queries

MDX queries are complete stand-alone statements. Many people are
already generating MDX queries without even knowing that MDX exists.
How? Because the excellent tools that allow you to connect to and query an
OLAP cube use a graphical interface which hides the process of writing
MDX queries. The user sits at a client machine and looks at the data which
can be represented as a bar chart, line graph, pie chart, grid of numbers,
whatever. They can use a mouse to slice and dice their way through the
data and every time the user makes a selection which requires different
data from the cube, the tool generates an MDX query behind the scenes,
sends it to the cube, gets an answer back and then displays it for the user.
Excel performs this trick when you make use of its pivoting abilities to
inspect data in a cube, and the same is true of tools like ProClarity.

MDX expressions

MDX expressions, on the other hand, are partial statements. They’re small
but highly useful chunks of code that are used for all sorts of purposes. For
example, they can be used to create calculated members which add signifi-
cant power to analysis cubes, as we’ll see later.

This book introduces both MDX queries and MDX expressions but we’ll
spend much more time on the expressions than on the queries. Again, if
you approach MDX from a SQL perspective, this seems weird because
querying is so important in SQL. However, in MDX this isn’t the case. In
addition, as we have said, there are some very good MDX querying tools
around which you can use to generate the MDX for you.

31

How MDX is used

For example, this is ProClarity’s highly graphical user interface:

32

How MDX is used

You can use the graphical interface to drill up and down through the data –
ProClarity takes care of generating the required MDX behind the scenes.
One outstanding feature is that ProClarity allows you, at any time, to view
the MDX it has generated and edit it (if you so desire) using the MDX
Editor that is built in to the product.

So tools like ProClarity are not only great tool for end users, they are also
very handy for teaching developers about MDX queries. If you aren’t sure
what syntax to use, design the query using the GUI and then sneak a look
at the MDX.

33

How MDX is used

� The MDX code generated by these tools is always syntactically correct and works
fine. Like most algorithmically written code it can, on occasions, be a little verbose.
However, it always shows you the correct overall form of the query and you can al-
ways hone your skills by hand-tuning it to a neater and more concise form. For ex-
ample the code above can be simplified to:

One other facet of software generated MDX is that it often includes amper-
sands (&). When you are starting to use MDX you can safely ignore these.
At the end of Chapter 14 we have a section that explains why they are
there, but we recommend that you leave it until then because the explana-
tion only makes sense when you have gained some experience with the
language.

� However, if we have piqued your curiosity, please feel free to read it now.

So, given that you have a tool like ProClarity or Excel around, you never
need to hand-write MDX queries yourself. MDX expressions, on the other
hand, are used much more widely. They are used to add business logic to
the cubes, to define security, color coding, exception alerting – in other
words, almost everywhere. Unless you are building very simple OLAP
databases, the chances are that you will want to use MDX expressions
somewhere. With all of this in mind we have concentrated mainly on MDX
expressions.

However, this book would be woefully incomplete without some informa-
tion about querying, so we’ll start by looking at MDX queries in the next
chapter and use them to introduce the basic syntax of MDX. From then on
we’ll concentrate mainly on MDX expressions, but to finish off (in Chapter
18) we’ll return to queries to fill in a little more detail.

34

How MDX is used

�

�

Chapter 3

MDX queries

This chapter is an introduction to using MDX to query OLAP cubes and
we’re also using it to introduce you to MDX syntax in general.

Since we’re starting on the practical work, you may want to try the MDX
statements for yourself. The cube we’re using is available in the CAB file
called FoodMart2000_MDX1.CAB and restores as a database called
FoodMart2000_MDX1. It is based on the standard FoodMart database that is
supplied as part of Analysis Services. In turn, that database contains two
cubes – we’ll be using the one called Sales_MDX1. We’ve put all of the MDX
statements used in this chapter in a text file called CHAP3.TXT so that you
can cut and paste them into whatever front-end tool you want to use to
send queries to the cube. See Appendix 1 for information about where
these files are located and how you can use them. If you want to use the
copy of ProClarity as your front-end tool, see Appendix 2 for instructions
on how to install it and about how to use its built-in MDX editor.

In fact, we’re going to be using the FoodMart2000_MDX1 database for chap-
ters 3 to 7 inclusive. In some of those chapters we make significant changes
to the cubes in the database. We thoroughly recommend that you follow
along with the examples and modify the cubes for yourself. However, in
case you have any difficulties, we have also included a CAB file called
FoodMart2000_EndChap7 which, as you might guess, has all of the work
from those five chapters completed for you.

Resources:
Starting database – FoodMart2000_MDX1
Cube – Sales_MDX1
Completed sample database – FoodMart2000_EndChap7
MDX samples – CHAP3.TXT

35

Using MDX for queries

MDX queries can’t be used in isolation; in other words, you can’t just squirt
one to an OLAP cube from thin air, you have to send it from some sort of
front-end application. If you are a hardcore programmer, you will prob-
ably want to write the front-end for yourself in assembler; those people
who actually have lives tend to use something like Excel, ProClarity, Busi-
ness Objects etc.

Whatever front-end you use, it is going to be receiving an answer back
from the cube. MDX queries return data from one or more cells. Using an
MDX query you can ask for (and get back from the cube) an array of data
with anything up to 128 dimensions. (Yes, we are using the word ‘array’ here in
a desperate attempt to avoid using the word ‘set’ because, as discussed in the earlier
chapters, the word ‘set’ has a very specific meaning in MDX. Essentially a query
returns the values from a collection of cells that form part of the original OLAP
cube.) Users can elect to see the data that comes back in a whole variety of
ways (pie chart, bar graph, grid etc.).

36

MDX queries

However, this choice is made using the front-end tool and is not specified
in the MDX query that is sent to the OLAP cube. If, in this chapter, we
mainly think of the data coming back as the grids of data rather than as
charts, it will make it easier to understand how the MDX is working.

The cube we’re using has the structure shown overleaf.

37

MDX queries

38

MDX queries

The tree pane on the left shows us that there are four dimensions by which
the user can slice and dice the data – Store, Time, Customers and Product.
(Not all of the dimension tables shown in the Schema Tab on the right are
used in this cube.) The cube also has two measures – Unit Sales and Sales.

MDX has to be able to specify not only where the data comes from in the
cube, but also how it is going to be structured in the grid that is sent to the
front-end application.

Data extracted from an OLAP cube can be defined in terms of sets and
tuples; the grids of data that appear in the front-end tool can be defined in
terms of columns and rows.

Imagine that you want to produce the simplest possible two-dimensional
grid – just a set of rows and columns; something like:

All Products

Sales $565,238.13

� In this case we’ve even reduced it down to one row and one column, but we’ll ex-
pand it in a minute.

The components that an MDX query needs in order to extract the re-
quested information from the OLAP cube and display it like this are:

• a component to specify the column headers
• a component to specify the row headers
• a pointer to the cube we are using

The first two components are going to be sets (as described in Chapter 1);
the third is simply going to be the name of the cube.

SELECT, FROM, ON COLUMNS, ON ROWS

MDX spells this out as follows:

SELECT
{set defining the column headers} ON COLUMNS,
{set defining the row headers} ON ROWS
FROM [cube name]

39

MDX queries

�

An example of a working MDX query looks like this:

SELECT
{[Product].[All Products]} ON COLUMNS,
{[Measures].[Sales]} ON ROWS
FROM [Sales_MDX1]

� Assuming that you have read Chapter 1, you are probably looking at {[Prod-
uct].[All Products]} trying to work out if it really is a set, or whether we have
got it wrong and it is a tuple. The answer is that it is a set. As we said in Chapter 1, a
set is composed of a collection of tuples, including a collection that simply has one
tuple in it. In this first example of a query we are keeping the data as simple as possi-
ble, so we are using a set that is composed of a single tuple. We’ll make it more com-
plicated in a minute.

Oh, and ignore the brackets briefly; we’ll explain their usage in Chapter 4 after you
have got the overall plan.

If you now hand-write this statement into a front-end tool like ProClarity
(or cut and paste it from the text file), as long as that tool is connected to the
correct cube, it will produce output something like this:

Note, incidentally, that this screen shot shows the Sales for 1997. This cube
has four dimensions and our MDX statement has only specified one of

40

MDX queries

�

them here – namely Product. Since it doesn’t specify anything about the
other three, Analysis Services assumes that we want to take data from
the default member. This is usually the highest level of each un-named
dimension – which is typically the All level. However, in this particular
cube, there is no All level in the Time dimension – as this screen shot from
Analysis Services shows when we examine the data using the data tab.

41

MDX queries

And the same can be seen from ProClarity.

In the case where a dimension isn’t specified and there isn’t an All level,
Analysis Services will, by default, use the first member from the highest
level. In our Time dimension this is 1997.

� Let’s summarize default members. You can set the default member of a dimension
using its Default Member property in Analysis Manager. If you don’t explicitly
specify one, the default member is the All member. Of course, you are not obliged to
have an Allmember, in which case Analysis Services will choose a member from the
highest level.

42

MDX queries

�

OK, that was easy. What if we want to reverse the rows and columns? We
simply swap over the sets like this:

SELECT
{[Measures].[Sales]} ON COLUMNS,
{[Product].[All Products]} ON ROWS
FROM [Sales_MDX1]

The answer is the same and so is the bar chart.

43

MDX queries

Now, suppose that we want to see a little more detail, and we happen to
know that the products can be broken down into three product families –
food, drink and non-consumables. We can simply alter the set that is point-
ing to all products and get it to point to the members of the next level down,
like this:

SELECT
{[Measures].[Sales]} ON COLUMNS,
{[Product].[All Products].[Food],
[Product].[All Products].[Drink],
[Product].[All Products].[Non-Consumable]} ON ROWS
FROM [Sales_MDX1]

44

MDX queries

Just to emphasise the point that we made earlier (about the fact that the
interface depiction of the data is independent of the MDX statement that
retrieves the data) you can use the interface options in your front-end tool:

to alter the graph that is produced, while the MDX remains unchanged.

45

MDX queries

Excellent! Now we also happen to know that there are fifteen members un-
derneath the member Food, so in order to show them we can write an MDX
statement that lists all fifteen:

SELECT
{[Measures].[Sales]} ON COLUMNS,
{[Product].[Product Family].[Food].[Baked Goods],
[Product].[Product Family].[Food].[Baking Goods],
[Product].[Product Family].[Food].[Breakfast Foods],
[Product].[Product Family].[Food].[Canned Foods],
[Product].[Product Family].[Food].[Canned Products],
[Product].[Product Family].[Food].[Dairy],
[Product].[Product Family].[Food].[Deli],
[Product].[Product Family].[Food].[Eggs],
[Product].[Product Family].[Food].[Frozen Foods],
[Product].[Product Family].[Food].[Meat],
[Product].[Product Family].[Food].[Produce],
[Product].[Product Family].[Food].[Seafood],
[Product].[Product Family].[Food].[Snack Foods],
[Product].[Product Family].[Food].[Snacks],
[Product].[Product Family].[Food].[Starchy Foods]} ON ROWS
FROM [Sales_MDX1]

At this point you could be forgiven for thinking “Just a minute! Are you
mad? You really expect me to type all of this into an editor and get it right?”

No, we’re just kidding (although this MDX query does run and does
produce the correct answer). We said in Chapter 1 that MDX is a language
specifically built for querying OLAP cubes, so it has a whole host of func-
tions that are designed to make this sort of task easier.

For example, we can replace the above list with a function called Children
that returns all of the members in the level directly below the member Food:

SELECT
{[Measures].[Sales]} ON COLUMNS,
{[Product].[Product Family].[Food].Children} ON ROWS
FROM [Sales_MDX1]

which returns exactly the same answer... but manages to ask the question
rather more succinctly.

46

MDX queries

� Incidentally, you'll notice that these last two queries are using one of the alternative
naming conventions (dimension.level.name) to point to the members, as
discussed in Chapter 1. The more common naming convention (dimension.
name.name), of course, works equally well:

SELECT
{[Measures].[Sales]} ON COLUMNS,
{[Product].[All Products].[Food].Children} ON ROWS
FROM [Sales_MDX1]

and, in fact, this is the form of the query that we have provided in the text file.

Hopefully, you are now really interested in functions like Children
because they are clearly mind-bogglingly useful in MDX. There’s more
about them in Chapter 6.

47

MDX queries

�

Suppose that you want to use two dimensions to slice and dice the Unit
Sales measure to produce a grid like this:

Have a go at working out the MDX required. If this is your first introduc-
tion to MDX, this may be a tough one, but it is worth persevering. You are
now specifying two of the dimensions – Customers and Product. You need
All Customers on the columns and the children of All Products on the
rows. You also need to know that if no measures member is specified, then
Analysis Services will use the default measure, or, if none is set, its own
arbitrary choice (usually the first one in the list). In this case that happens to
be what we want, Unit Sales, so you can forget about that for the moment.

One answer (there are others) is:

SELECT
{[Customers].[All Customers]} ON COLUMNS,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]

OK, now try this one. We want to expand this to show Unit Sales for the
same product groups but we want to drill down into the customer

48

MDX queries

dimension as far as the three US states represented in this data (California,
Oregon and Washington).

We’re working on a need-to-know basis... and what you need to know here
is that these three states are the children of [Customers].[All Customers].
[USA] in the customer hierarchy.

So the obvious answer is simply to modify the above statement to:

SELECT
{[Customers].[All Customers].[USA].Children} ON COLUMNS ,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]

49

MDX queries

WHERE

This works fine, and all is well in MDX land. But suppose you don’t want to
use the Unit Sales measure; instead you want to use Sales. No problem,
you can use the WHERE clause to give you precisely this control.

SELECT
{[Customers].[All Customers].[USA].Children} ON COLUMNS,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Sales])

This produces:

50

MDX queries

The WHERE clause works pretty much as you would expect. In this case it says
“show me this data where the measure involved is Sales”. However, the
WHERE clause certainly isn’t restricted to measures, nor is it restricted to a sin-
gle dimension. For example, the following is a perfectly legal MDX query:

SELECT
{[Customers].[All Customers].[USA].Children} ON COLUMNS ,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Sales], [Time].[1998])

and will show you exactly the same output as above, except for the year 1998.

And:

SELECT
{[Customers].[All Customers].[USA].Children} ON COLUMNS ,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Sales], [Time].[1998].[Q1])

essentially says “Show me the Sales for the first quarter of 1998 for each US
state and product group.” And that is exactly what you get.

51

MDX queries

Slicer

More formally, we can refer to whatever is in the WHERE clause as the slicer.
So the above MDX query could also be described as saying “show me the
US customers and product groups for the measures = sales, time.1998.Q1
slice.” Or, indeed, “show me the US customers and product groups sliced
by sales and Q1 1998.”

It is also worth knowing that any dimensions not explicitly referenced in
the MDX query are assumed to be slicer dimensions and, as such, will filter
the data with their default members (see above).

Summary

MDX queries are very powerful and relatively simple to write; we’ve used
them in this chapter to introduce you to the general MDX syntax. We
suspect that you will often, in practice, use a front-end tool to generate
queries for you; however, just in case you are interested in understanding
how more complex queries can be written, we’ve put some more detail in
Chapter 18.

In the rest of the book we are going to be mostly using expressions to illus-
trate more complex aspects of MDX, but always bear in mind that most of
the information that you learn about expressions can be applied equally to
MDX queries.

52

MDX queries

Chapter 4

MDX syntax

Resources:
Starting database – FoodMart2000_MDX1
Cube – Sales_MDX1
Completed sample database – FoodMart2000_EndChap7
MDX samples – CHAP4.TXT

Brackets, braces and the odd dot and comma

Now that you’ve seen how MDX works in practice, this seems like a good
time to explain the use of brackets and braces.

Brackets [] – Dimension names and member names

Firstly, there are brackets [] which are called ‘square brackets’ in UK
parlance. Dimension names and member names are enclosed within brackets.
You can enclose all such names in brackets, though it is only syntactically
obligatory if the name contains numbers, spaces, other special characters or is
a keyword. For example, From is a keyword, and if there is dimension called
From, it should be encoded as [From]. When the MDX parser comes across, for
example, a number, it expects to be able treat it as a number; the brackets tell it
that it’s a name that just happens to contain numerical information.

Here are six syntactically correct dimension or member names:

[All Products]
Drink
[Penguin]
[Q3]
[Drink]
Penguin

53

In the real world you are likely to see MDX written with a mix of bracketed
and unbracketed names. Code generation tools (like ProClarity) tend al-
ways to put brackets in because it’s easier to write an algorithm that always
puts them in than to write one that determines whether brackets are syn-
tactically necessary or not. Humans, on the other hand, like short cuts and
are more likely to use brackets only when necessary; however, they often
use a GUI tool to do the grunt work and then hand-tweak the code – the re-
sult is the mix you often find.

� During the course of planning and writing the book, we’ve swung to opposite ends
of the spectrum (should we always use brackets? should we use them only when
obligatory?) and ended up feeling that our examples ought to represent real code.
You’ll find that our examples run true to the real world description above and mix
bracketing and non-bracketing with impunity. Our hand-typed code tends to be low
on brackets while the code we’ve cut and pasted from ProClarity’s MDX editor is
full of the things. Apologies are proffered in advance to anyone who is offended.

Dots . – Separators

When you use a dimension name and several member names together in
order to drill down into a hierarchy to find a particular member, you need
to separate the names with dots, like this:

[Product].[Drink].[Beverages]

Braces () – Tuples

Braces () – brackets in UK English – are used to denote tuples, a tuple is (as
detailed in Chapter 1) a collection of members, each taken from a different
dimension that points to some data in which we’re interested. More
precisely, a tuple is the intersection of one or more members, each of which
is taken from a different dimension in a cube.

Tuples, you’ll recall, are defined in terms of dimensions and members
which, as you now know, may themselves have to be wrapped in brackets.

So, a simple tuple would be syntactically represented as:

([Product].[Drink].[Beverages])

54

MDX syntax

�

Tuples can, and usually do, contain references to several members. A
comma is required to separate each member in the tuple. Here are tuples
with two and three members respectively, separated by commas and in-
side braces:

([Product].[Drink].[Beverages], [Customers].[USA])

([Product].[Drink].[Beverages], [Customers].[USA],
[Time].[1998])

Curly braces { } – Sets

And now for curly braces { }, or curly brackets, depending on your location
in the world. These are used to denote sets. As detailed in Chapter 1, a set is
a collection of tuples with the same dimensionality.

So the following are perfectly respectable examples of sets:

{([Product].[Drink].[Beverages]),
([Product].[Food].[Produce])}

{[Customers].[All Customers].[USA].Children}

{[Product].[All Products].Children}

{[Product].[Product Family].[Food].[Baked Goods],
[Product].[Product Family].[Food].[Baking Goods],
[Product].[Product Family].[Food].[Breakfast Foods],
[Product].[Product Family].[Food].[Canned Foods]}

You remember that we said earlier that a set may be composed of more
than one tuple, but it can also comprise only one tuple, or even zero tuples,
in which case it is an empty set. Well, we can illustrate this by going briefly
back to the SELECT statement that we covered in Chapter 3.

The SELECT statement is expecting you to specify sets for the columns and
rows. In addition, if we are inquisitive, we can test this by trying to send an
MDX query to Analysis Services with tuples instead of sets. Something like
this will do:

SELECT
([Measures].[Sales]) ON COLUMNS,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]

55

MDX syntax

We are using a tuple for the ON COLUMNS statement and a set for the ON ROWS.
The result is an error message to the effect that the member cannot be con-
verted to a set.

OK, what happens if we explicitly tell Analysis Services that this is a set and
not a tuple? All we have to do is to wrap up the tuple in curly braces like
this:

SELECT
{([Measures].[Sales])} ON COLUMNS,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]

This ensures that the query runs fine. We’ve told Analysis Services that this
is a set and a set can be a single tuple, so Analysis Services is happy and will
run the query.

In fact, we can, in this case, dispense with the braces that distinguish the
contents of the set as a tuple, like this:

SELECT
{[Measures].[Sales]} ON COLUMNS,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]

56

MDX syntax

and the query runs serenely as before because this is now a set, not a tuple.
It just happens to be a set that comprises of a single tuple.

If it sounds like we are laboring this point it is simply that we have found
that, when teaching people to use MDX, they often get bogged down here.
So a useful and really simple trick is, when your MDX statements are failing
to work, try wrapping up your tuples in curly braces. If the MDX statement
you are using was expecting a set, this should cure the problem.

57

MDX syntax

Chapter 5

MDX expressions

Resources:
Starting database – FoodMart2000_MDX1
Cube – Sales_MDX1
Completed sample database – FoodMart2000_EndChap7
MDX samples – CHAP5.TXT

In Chapter 2 we said that MDX is typically used for querying OLAP cubes
and also for expressions, so here we’ll start looking at creating and using
MDX expressions. Expressions may take a tuple or set as a parameter and
always return a value (even if it is a null); MDX doesn’t have any notion of
‘void’. Expressions are partial MDX statements and they have a host of uses
such as defining calculated members, sets, or member properties.

Calculated members are one of the more common ways in which MDX
expressions are put to work and they can be created for any dimension.
This includes the measures dimension; indeed calculated measures are the
most common type of calculated member.

Calculated members enable you to use existing information in a cube to
generate further information that can tell you more about your business.
For instance, you can calculate the growth or slump in sales figures. You
can calculate this as currency amounts or as percentages and you can work
out factors such as the average sales over specific periods. Data generated
with calculated members makes it easier to see exceptions to the expected
behavior of your business, enhancing the probability of spotting peaks and
troughs in performance. Such information gives you the opportunity to
react more quickly to unexpected changes.

Operationally, calculated members are computed at runtime so there is no
processing penalty for you either in terms of the time it takes to process
your cube or in the number of aggregations that have to be stored. The only
hit you take is at runtime, when the cube is queried and in practice the
calculations are very, very fast so the overall hit is negligible in most cases.

58

We’ll start the practical work below and write some simple MDX expres-
sions which we’ll use in calculated members, but first just a very brief recap
of cell naming.

Recap of cell naming

In a spreadsheet like Excel, every cell has a co-ordinate/name that is unique
to that cell, for example, B7 or C8. The same idea is true of OLAP cubes.
Every cell is a tuple (see Chapter 1) and every tuple has a unique name so
each cell, by definition, has a unique name.

We can illustrate this with a simple, three-dimensional cube:

• Products which contains Clothing, Appliances and Groceries
• Time, which contains the years 1997 through 2001
• Measures which contains Sales, Costs and Units.

� Note that, as discussed in Chapter 1, we are essentially treating Measures as just
another dimension. Note also that this is simply a theoretical cube in order to keep
the MDX simple – it isn’t one of our sample cubes.

Now, consider the cell highlighted here. We can reference the appropriate
member in Products by saying:

59

MDX expressions

�

Products.Clothing

We can see that the cell is in the year 2000 so we can say:

Time.[2000]

and the cell clearly refers to the Units measure:

Measures.Units

So the correct way to reference this cell, that is, the tuple that refers to this
cell is:

(Products.Clothing, Measures.Units, Time.[2000])

We can do the same for another cell, just to make the point that all of them
have unique names.

(Products.Clothing, Measures.Sales, Time.[1999])

60

MDX expressions

The concept of the current cell

OK, so each cell has a unique name – a tuple. But what happens when we
want to write an MDX expression that refers not to a specific cell in the
cube, but to the one in which we are currently interested? Easy, we can ref-
erence the ‘current cell’ by using a function called CurrentMember.

Basically, what CurrentMember says is “you are here”, rather like the well-
fingered arrow on a map displayed in a public place. It’s a little smarter
than that, however, in the sense that it is a dynamic “you are here”. As you
(or the user of your cube) move around, the CurrentMember moves around
with you.

So another way to refer to the cell:

(Products.Clothing, Measures.Units, Time.[2000])

would be to say:

(Products.CurrentMember, Measures.CurrentMember,
Time.CurrentMember)

This is a completely generic way to refer to any co-ordinate across those
three dimensions.

� At this point you may be thinking “OK, so we now have a name that seems to be able
to point to any cell in the cube. What use is that?” It does get to be useful, honest;
and before the end of the chapter as well.

61

MDX expressions

�

Relative cell referencing

Let’s go back to our diagram for a moment:

The highlighted cell is:

(Products.Clothing, Measures.Units, Time.[2000])

and let’s assume for a minute that it is also the current cell, so it can also be
referenced as:

(Products.CurrentMember, Measures.CurrentMember,
Time.CurrentMember)

How can we reference the cell above it, the one which has been labeled
with a “1”?

Well, it can, perfectly accurately, be referred to as:

(Products.Clothing, Measures.Units, Time.[1999])

However, the only difference between the gray cell and the one labeled “1”
is in the Time dimension. Conveniently there is an MDX function called
PrevMember which you can use on any of the dimensions (including Time)
so this new cell can also be referenced as:

(Products.Clothing, Measures.Units, Time.[2000].PrevMember)

62

MDX expressions

Time.[2000]was the known entity so we go back one member by using the
PrevMember function (the name is taken from, as you might guess,
“Previous Member” but you have to use the contraction PrevMember).

OK, suppose that we want to refer to a cell which is one ahead in Time; that
is, to the cell labeled “2” below?

There is another MDX function, very similar to PrevMember, called
NextMember. So “2” can be referenced as:

(Products.Clothing, Measures.Units, Time.[2000].NextMember)

In Chapter 2 we said that MDX differs from SQL because it is sensitive to
the position of the data within the data structure; here you can see this
‘awareness’ of position working in practice.

63

MDX expressions

Now a more challenging example: what about a cell that is several
members removed? It’s labeled with a “3” below.

You see that the cell in question is back one member from Units and back
three members from 2000. You know about PrevMember – so can you say
this?

PrevMember.PrevMember.PrevMember

Well, the answer is that you can. You could use multiple PrevMember to go
back several steps, but it’s not at all elegant. You get long, long expressions
that are difficult to understand and error-prone to write. So there is an
MDX function called Lag designed especially for this case. To go back three
members on the Time dimension we say:

Time.[2000].Lag(3)

So we can refer to the cell as:

(Products.Clothing, Measures.Units.PrevMember,
Time.[2000].Lag(3))

64

MDX expressions

What if you wanted to refer to a cell not three periods back but two ahead?
There’s another function that’s similar and a parallel to Lag(), called
Lead(), so we’d use Lead(2). In fact, just to make life simpler (or more com-
plex, depending upon your point of view) both Lag and Lead can take nega-
tive parameters, so you could use the Lead function to refer to cell “3” as:

(Products.Clothing, Measures.Units.PrevMember,
Time.[2000].Lead(-3))

� So if you’re a pessimistic person you can always use Lag, even to move forward. If
you’re an optimist you can ignore the Lag function, use Lead all the time and put a
negative parameter in whenever necessary.

That background information is enough to allow us to start using calcu-
lated measures in earnest and to make this as useful as possible, we’ll illus-
trate their use by solving three common business problems. The cube we’ll
be working with is Sales_MDX1, which is the same one we used in Chapter 3
and we’ll be using it for the next chapter as well. In this cube there are
Measures for Sales (in dollars) and Unit Sales.

The practicalities – how to look at the data in
a cube

We’ll start with a brief introduction to using the tools in Analysis Manager
to look at data in a cube (rather than using a front-end tool as we did in
Chapter 3), then we’ll introduce our first business problem and solve it by
creating a calculated member. This and the following two problems all
come under the general heading of time-series analysis.

65

MDX expressions

�

With Analysis Manager installed and the cubes from the CD-ROM
restored, navigate down the Tree view on the left, expand the
FoodMart2000_MDX1 database and the Cubes folder. You should see a cube
called Sales_MDX1. Right click upon it and select Browse Data from the
menu that pops out. This opens the Cube Browser.

The top section shows the Product, Store and Time dimensions as raised
buttons and in the pane below there is a grid which shows data from the
Customers dimension and from the two measures.

You can drill down into the data in the grid by clicking on any label that is
preceded by a plus symbol: double clicking on USA, for instance, expands
to show three states and doing it again collapses the states back into their
country. Any label preceded by a minus symbol can be collapsed.

66

MDX expressions

Click and drag the raised button that indicates the Time dimension in the
area above the grid, releasing the mouse button when it’s right over the
button labeled ‘+ Country’ on the grid. (The mouse pointer will change to
an icon looking like a four-paned window with a diagonal double-headed
arrow in the top right pane). The contents of the grid will change to
showing the two measures in relation to the Time dimension, and the
Customers dimension will be popped back into the area above the grid.

67

MDX expressions

Now you can click to drill down through the levels of the Time hierarchy.
You can add further dimensions by clicking and dragging: here both the
Time and Customers dimensions are shown.

There is another way to inspect data, and it’s worth using when you’re
learning (we use it for many of our screen shots) because it shows a bit
more about the structure of the data. Close the Cube Browser, right click on
the cube again and this time, select Edit.... This opens the Cube Editor.

68

MDX expressions

There is a tree pane for navigation at the top left and below that the proper-
ties of the selected item are shown with brief descriptive text beneath. The
tree pane shows that the cube has four dimensions – Store, Time,
Customers and Product – and two measures – Unit Sales and Sales. The
name of the cube is shown in the top right and the rest of the right side of
the screen is given up to the schema view of the cube. The tables from
which the cube is built are displayed: one fact table with many dimension
tables strung from it.

There are two tabs below the schema view, labeled Schema (currently on
view) and Data: click the Data tab. The left side of the screen remains
unchanged and the right side gives you the same view as the Cube Browser
and is driven as described above.

1 Comparing values

We’ll start with a very simple collection of data rather than the data from
the cube, just to illustrate how this works.

� We would normally say “set of data” but given that the word ‘set’ has a specific
meaning in MDX, the word ‘collection’ seems safer.

69

MDX expressions

�

Year Quarter Month Sales

2000 790

Q1 120

January 30

February 40

March 50

Q2 200

April 65

May 45

June 90

Q3 185

July 55

August 60

September 70

Q4 285

October 80

November 100

December 105

You can see that the measure is Sales and that the Time dimension has
three levels: Year, Quarter and Month. Suppose we focus our attention on a
particular member at a particular level (say, February at the Month level)
and want to know how sales have improved since the previous month
(January). Can we write an MDX statement to do that? Yes, we could write
one that does exactly and precisely that (and nothing else) but we can also
do better. Using what we have just learnt about CurrentMember and
PrevMember, we can write an expression that’s going to work for all
members of the Month level. Better still, it will work for all members at all
levels in the Time dimension.

What we have to do is to create a calculated member with this expression:

(Time.CurrentMember, Measures.Sales) –
(Time.CurrentMember.PrevMember, Measures.Sales)

70

MDX expressions

This calculated measure (a calculated member in the Measures dimension)
derives a whole new value that we didn’t know beforehand. The first part
of the expression identifies the cell we’re interested in (the sales for Febru-
ary) and subtracts from it the sales figure for January which is identified by
the second part of the expression. The value the expression returns is 10,
the difference between 40 and 30. How this works is best summed up with
a diagram.

The beauty of this expression is that Time.CurrentMember is level sensitive,
so if we swap to a different level:

it still works. So if the CurrentMember is a month, then the PrevMember is the
previous month. If CurrentMember is a quarter, then PrevMember is the
previous quarter, which is just how it should be.

OK, that’s the theory; now let’s do some practical stuff and build a calcu-
lated member using the Sales_MDX1 cube.

71

MDX expressions

The practicalities – how to create a calculated
member

In the tree view of the Cube Editor you’ll see a folder called Calculated Members
which is empty at present. Right click upon it and select the New Calculated
Member... option that appears. This opens the Calculated Member Builder:

The Parent dimension is already in place: as we said above, mostly we’ll be
creating calculated measures and so Measures is quite correct here.

Type in a Member name: Sales Growth is good. The Value expression is
where we put the MDX code that defines the calculation: this is what we
thrashed out above:

(Time.CurrentMember, Measures.Sales) –
(Time.CurrentMember.PrevMember, Measures.Sales)

� MDX can be typed in and/or cut and pasted in from a text editor or word processor.
All of these expressions are in a text file called CHAP5.TXT on the CD-ROM. You
can also build up an expression by selecting objects from the Data and Functions
panes. On the left, the Data pane shows the cube structure (dimensions and levels)

72

MDX expressions

and in the middle, the Functions pane shows a list of all the MDX functions. When
you highlight a function, its syntax is shown at the bottom of the screen. Also, the
Calculated Member Builder automatically uses color to highlight various parts of
an expression. Functions are shown in red, for instance, and some bracket matching
is performed so if you have an orphan bracket, it will be highlighted in red to draw
your attention to it.

Click the Check box to test the syntax and all being well, you should see this:

Now click the OK button and inspect the new measure from the Cube
Editor:

and there are the newly generated figures.

� We’ve expanded Time so that we can see some of the detail for Quarter and Month
and we have trimmed the screen so that it is more readable on the page.

The sales growth for Month 2 in 1998, for instance, is an uninspiring
–$3,657.28. This and the other negative numbers have already given us a
greater understanding of our fictitious company. The good news is that
this is just a first simple example of what can be done with calculated
members; there’s much more to come.

73

MDX expressions

�

�

� Incidentally, if you decide to look at a calculated member from a front-end tool like
ProClarity, make sure that you first save the new measure in the Cube Editor and
then refresh the view from ProClarity by selecting File, Open Cube.

It’s worth noting that the CurrentMember is always the default, so the ex-
pression above could be condensed a little to:

(Time.CurrentMember, Measures.Sales) –
(Time.PrevMember, Measures.Sales)

It will be understood that you’re referring to the previous member from the
current member and it saves you a little bit of typing.

� During the proof-reading stage Mosha, who really does know about this sort of
thing in detail, added:

“Saying that ‘CurrentMember is always the default’ is a little vague.
CurrentMember is a default property of the dimension. Therefore, the expression
can be simplified even further to:

([Time], Sales) - ([Time].PrevMember, Sales)

or even to

Sales - ([Time].PrevMember, Sales)

”

2 Comparing values between years

So far, so good. Our expression:

(Time.CurrentMember, Measures.Sales) –
(Time.CurrentMember.PrevMember, Measures.Sales)

is working fine except that it is producing several negative numbers. If this
was a real company we would be concerned with finding out whether there
was an explanation for these other than the obvious one that sales are bad.

� However, we would like to make it clear that we would never use the power of calcu-
lated members to, for example, massage the sales figures just to save our jobs; nor
would we condone this action in others. Obviously.

One explanation for the variable figures may be that our sales are seasonal,
so in July we see that we sold fewer items than in June, but perhaps that’s
an effect of the summer silly season. Perhaps we always sell fewer items in

74

MDX expressions

�

�

�

July. Is there a way to compare a member not to the previous member, but
to the parallel period? That is to say, can we compare the sales in January
with the January sales from the previous year? Can we compare the
Quarter 1 sales with the previous year’s Quarter 1 sales and so on?

Answer: of course there is (otherwise we would never have brought up the
problem in the first place). In this case we want to start once more with:

Time.CurrentMember, Measures.Sales

and to think first about members at the Month level. We know about the Lag
function, so we could try:

Time.CurrentMember.Lag(12), Measures.Sales

Wherever we are in the month dimension, we’re going to get the month
from the previous year. Does this work?

(Time.CurrentMember, Measures.Sales) -
(Time.CurrentMember.Lag(12), Measures.Sales)

Create it as a calculated measure and see. The answer is “Yes! It works!
Well... up to a point.”

It works at the month level for the year 1998. It doesn’t work for months in
1997, but that’s because we don’t have the necessary comparative data from
1996 so we can’t blame the expression for that. However, at the Quarter
level, Lag(12) is 12 quarters ago (which is three years back) and at the year
level the expression is trying to compare with data from twelve years ago.
This expression is a good first attempt, but it doesn’t fully answer the ques-
tion: we want to compare to just one year ago and we want the expression to

75

MDX expressions

work at all levels. You will not be surprised at this point to discover that we
have a function up our sleeve(s) called ParallelPeriod in MDX.

ParallelPeriod takes three parameters. The first tells it the time span you want
to go back for comparison; in other words, what you mean by period. We have
Year, Quarter and Month as our periods, each equating to a level in the hierarchy
and in this case we’re talking about performing comparisons with data that
comes from the previous year, so we put Year as the first parameter.

The second parameter is simply a numeric expression; the function is
saying “tell me how many of these time units you want to go back”. In our
case, the value we need is ‘1’ because we want to compare with data from
one year back.

The last parameter tells the function which member to work upon and so
we use CurrentMember again because we want it to work not just at the
month level but at the quarter and year levels as well.

The first part of our expression is fine so we write:

(Time.CurrentMember, Measures.Sales) -
(ParallelPeriod(Year,1,Time.CurrentMember)

and we’re looking for the Salesmeasure, so the complete expression reads:

(Time.CurrentMember, Measures.Sales) -
(ParallelPeriod(Year,1,Time.CurrentMember), Measures.Sales)

and that’s our answer. Try it for yourself as a calculated measure called PP
Growth.

Excellent.

76

MDX expressions

3 Calculating values to date

Let’s look at another problem. Lots of people ask “What are my sales from
the beginning of the year till now?” We’ll solve this in two stages. The first
is to find all of the appropriate values and the second is to aggregate those
values to provide the total to date.

For the first stage we need a function called YTD (which stands for
YearToDate). YTD is actually the equivalent of another function called
PeriodsToDate, and PeriodsToDate is similar to ParallelPeriod in that you
specify the unit of time you’re looking at; in other words, which level
defines the period in your expression. YTD is more specific in that it’s always
going to look at the current year and say “Give me a member and I’ll return
to you a set that includes that member plus all the previous members at
that level which are still within that year.”

The member that interests us is Time.CurrentMember. Wherever we are, we
want to get back a set of members (months or quarters) that came before
the current member in the current year, and the set should include the cur-
rent member. So, if we were looking at March 2000, the YTD function would
return January 2000, February 2000 and March 2000. We start writing the
expression for a calculated member called YTD like this:

(YTD(Time.CurrentMember),

� Note that this YTD function, unlike the previous ones we have looked at, isn’t simply
returning numerical data. Instead it is returning a set that consists of members
from the same dimension.

Once we have the set returned by YTDwe can perform whatever operations
we like upon it. In this case we want to aggregate the data so we use the Sum
function.

Sum takes two parameters, the first of which, conveniently enough, is a set.
We have our set as provided by the YTD function so we put that in:

Sum(YTD(Time.CurrentMember),

The second parameter required by Sum is a numeric expression: that’s the
measure that we’re interested in, Sales. So we say “Give me the sum of the
set of YTD members for Sales”. This is the complete expression:

Sum(YTD(Time.CurrentMember), Measures.Sales)

77

MDX expressions

�

The result looks like this:

Summary

You have now written your first MDX expressions and met a few very
useful functions, such as the perennially useful CurrentMember. This func-
tion, together with PrevMember and NextMember, are invaluable for identi-
fying where you want to be within a cube.

You’ve also written MDX code incorporating these and other functions to
create calculated members, or calculated measures to be even more precise.
Clearly you have to balance the pros and cons before deciding to use a
calculated measure in your particular cube, but you’ll have guessed by now
that we are encouraging you to use them in many cases. They are often an
excellent solution when the value for the new measure is derivable from
the existing measures.

We’ve had to cover a lot of groundwork and theory to reach this point but
if you’re still with us, you’ve made a good start towards mastery of basic
MDX. There’s a lot to grasp, especially from a standing start, so several
passes may help you tighten your grip. We’d recommend reviewing the
previous few chapters if the groundwork ever begins to feel a little shaky or
if you need to refresh your understanding.

78

MDX expressions

The table below lists the functions we’ve covered in this chapter, showing
what they require and what they return.

Function Requires Returns

CurrentMember Dimension Member

PrevMember Member Member

NextMember Member Member

Lag Numeric expression Member

Lead Numeric expression Member

ParallelPeriod Level, numeric expression, member Member

YTD Member Set

Sum Set, numeric expression Number

79

MDX expressions

Chapter 6

Navigating the hierarchy

Resources:
Starting database – FoodMart2000_MDX1
Cube – Sales_MDX1
Completed sample database – FoodMart2000_EndChap7
MDX samples – CHAP6.TXT

We talked in the last chapter about relative referencing of cells in a cube.
CurrentMember is very useful as a dynamic “you are here” identifier for a
particular cell, both when used on its own and in conjunction with other
functions such as PrevMember, Lag and Lead.

However, there are also times when it is useful to be able to refer to
members by means of their position within the hierarchy of a particular
dimension, and in this chapter we’ll explore relative referencing of
members.

A hierarchy can also be called a family tree. This is an apposite term,
matching the way that MDX references members within a hierarchy:
familiar words like parents, children, descendants and ancestors are used
which will need little explanation.

The illustrations below shows the hierarchy of the Time and Product
dimensions in SALES_MDX1. You’ve already met these in passing, and here
we are going to use them to illustrate some of the tools available to you for
navigating a hierarchy.

80

Here are the levels in both dimensions:

Here are some sample members in the Time dimension:

81

Navigating the hierarchy

and these are some sample members in the Product dimension:

Children

We’ll start by looking at parent–child relationships. At the top of the
Product tree shown above is the All Products member, which is the only
member of the (All) level. Below it are Drink, Food and Non-Consumable, the
three members of the Product Family level. As you’d guess, All Products
is the parent of all three and they are its children.

The Children function, predictably enough, identifies the member or
members one level below the starting level. You specify the member for
which you wish the children returned and then invoke the Children
function.

82

Navigating the hierarchy

So:

[Product].[All Products].Children

returns the set of all three members of the level immediately beneath the
(All) level, namely Drink, Food and Non-Consumable.

� Incidentally, if you are really keen you can insert this kind of statement into an
MDX query of a generalized type such as:

SELECT
{[Product].[All Products].Children} ON COLUMNS
FROM [Sales_MDX1]

to see that it does work and to check what it will return. For this reason, all of these
statements are in the Chap6.txt file; just in case you want to try them out.

Similarly, the expression:

[Time].[1997].Children

returns all four members at the level immediately beneath the 1997
member, namely Q1, Q2, Q3 and Q4.

There are two variations on the theme of children: FirstChild and
LastChild. As you might expect from the family tree analogy,

[Time].[1997].FirstChild

will return Q1 and

[Time].[1997].LastChild

will return Q4.

Parent

To no-one’s great surprise, the Parent function works the other way
around. So given the expression:

[Product].[All Products].[Drink].Parent

the Parent function would return the All Products member.

If we use a different child of All Products:

[Product].[All Products].[Food].Parent

the Parent function still returns the All Products member in exactly the
same way.

83

Navigating the hierarchy

�

And, just like the Child function, we can use Parent at any level of the hier-
archy, so:

[Time].[1997].[Q1].[1].Parent

will return [Time].[1997].[Q1] as the parent member.

� Note that there is an important difference between Children and Parent.
Children returns a set while Parent returns a single member. However, as long as
you wrap these up in curly brackets they will still work in an MDX query, for
example:

SELECT
{[Time].[1997].[Q1].[1].Parent} ON COLUMNS
FROM [Sales_MDX1]

Incidentally, during proof-reading Mosha added the following. “It is also important
to avoid confusion between tuples and members in this chapter. A member is always
also a tuple, but a tuple is not always a member. Therefore, a member can be used
anywhere where tuples can be used, but not vice versa. For example, functions like
Parent will work on a member, i.e. USA.Parent, but won’t work on a tuple, i.e.
(USA, Drink).Parent will return an error.” This is an excellent point and worth
bearing in mind when you first play with functions because it is easy to get confused
between the two. Of course, after a while it will become second nature.

Nesting functions

As you might imagine, you can nest the functions so you can ask for:

[Product].[All Products].LastChild.Children

which returns Carousel, Checkout, Health and Hygiene, Household and
Periodicals.

or:

[Product].[All Products].LastChild.Parent

which returns All Products.

However, you can’t use something like:

[Product].[All Products].Children.Parent

which is logical enough because [Product].[All Products].Children re-
turns a set but Parent is expecting a member.

84

Navigating the hierarchy

�

Outside the limits

If you ask for the Parent of a top level member, or the Child of a bottom
level one, then the functions return NULL members (rather than a zero).

� Incidentally, the concept of NULLmembers is very important and very different from
zero. Zero is a number, but the Parent function always returns a member. So MDX
has a concept of a special NULL member which is always returned when functions go
out of bounds. For example:

[Products].[All Products].FirstChild.Parent

returns [Products].[All Products]

But

[Products].[All Products].Parent.FirstChild

returns NULL, because Parent took us outside the limits.

Reality check

At this point you may be thinking “Well, this is all interesting enough but to
write the MDX expression to return the parent of Drink, we had to drill
down through the parent itself which means we had to know the parent
before we started.” True. Good point. But, like all programming languages,
synergy always comes into play – the whole is greater than the sum of the
parts. For example, try combining the Parent function with CurrentMember
to create a calculated measure called, say, Product Percentage:

(Product.CurrentMember, Measures.[Unit Sales]) /
(Product.CurrentMember.Parent, Measures.[Unit Sales]) * 100

This shows us the unit sales for any given member expressed as a percent-
age of the unit sales of its parent. This apparently innocent expression
turns out to be deceptively powerful.

85

Navigating the hierarchy

�

Take a look at the breakfast foods part of the Product dimension, shown
below.

Our new calculated measure lets us drill up and down the product hier-
archy and see how each group is doing in comparison to its siblings (chil-
dren of the same parent).

It can tell us, for instance, what percentage of unit sales were generated by
each of the five breakfast cereal manufacturers.

� If you want to see this in ProClarity, fire it up and connect to the cube. Click on the
Dimensions button in the toolbar, click on the measures tab that appears and select
your new calculated measure. (If you can’t see it, check you’ve saved the new mea-
sure in the Cube Editor and try refreshing the view from ProClarity by selecting
File, Open Cube.) Then drag and drop dimensions between the Rows, Columns and
Background boxes until they are as shown. Select the Product tab, drill down and
select the products as shown in the following illustration. Finally, press the Execute
button.

86

Navigating the hierarchy

�

It also shows which of the Best range of products performed as its brand
name suggests,

87

Navigating the hierarchy

and can also compare the sales of Best and Special products.

Special Wheat Puffs seem to have an edge...

Furthermore, you can make use of the fact that you know the name of the
top member and create a calculated measure called, say, Product Total
Percentage:

(Product.CurrentMember, Measures.[Unit Sales]) /
(Product.[All Products], Measures.[Unit Sales]) * 100

88

Navigating the hierarchy

which will give you, at any level, the percentage of total unit sales that are
due to a particular member, rather than an absolute unit sales figure.

So a query like:

SELECT
{ [Time].[1997] } ON COLUMNS ,
{ [Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Product Total Percentage])

is very effective.

89

Navigating the hierarchy

However, it rapidly gets very tedious when you want to select a large
number of members at the lower levels of the hierarchy. What we need
here is a function that will find descendants for us....

Descendants

Regrettably there is no Grandchildren function but we do have at our
disposal a very powerful function called Descendants.

The Descendants function normally requires you to supply two arguments
– a member and then the level at which you wish to retrieve the set of de-
scendants, for example:

Descendants([Time].[1997],[Quarter])

Note the comma that sits between the member and the level, and the
braces that wrap around the arguments that the Descendants function
requires.

� Arguments are the stuff that some functions need in order to... err... function;
they’re often wrapped up in some way and MDX uses braces for its wrappings.
Some functions take arguments, as does Descendants, and some, like Parent,
don’t.

In the expression above, we’re looking at the Time dimension, the 1997
member and at the Quarter level. This expression would return the set of
descendants of 1997 at the Quarter level, namely the four quarters Q1, Q2, Q3
and Q4.

The expression:

Descendants([Time].[1998],[Month])

would return all twelve months 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 (that is, all
the descendants of 1998 at the month level) and:

Descendants([Time].[1998].[Q2],[Month])

would return all the descendants of Q2 at the month level, namely 4, 5 and
6.

Descendants can also take a different second argument: the first is still the
member in which you’re interested and this time the second is the number
of levels you want to go down in the hierarchy. To get the same result as
the previous expression, you’d write:

Descendants([Time].[1998].[Q2],1)

90

Navigating the hierarchy

�

And, to get all twelve months we could also use:

Descendants([Time].[1998],2)

If we failed to specify the level by leaving the final element out of the ex-
pression, like this:

Descendants([Time].[1998].[Q2])

it would still work but it would return Q2 itself and also 4, 5 and 6. In other
words, without the final part of the argument that specifies the level from
which members should be returned, Descendants will return the stated
member and all members at any level below it in the hierarchy.

So:
Descendants([Time].[1997])

returns 1997, Q1, Q2, Q3, Q4,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. At first sight
this appears relatively unhelpful – rather a mixed bag of members, in fact.
But in practice it turns out to be very useful. For example, when combined
with the Product Total Percentage calculated measure that you created
earlier, you can now write an MDX query like:

SELECT
{Descendants([Time].[1997])} ON COLUMNS ,
{[Product].Children } ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Product Total Percentage])

which allows you, at a glance, to compare sales of product groups both by
quarter and by month.

91

Navigating the hierarchy

In fact, if you drill a little deeper with:

SELECT
{Descendants([Time].[1997])} ON COLUMNS ,
{[Product].[Product Family].[Food].[Breakfast
Foods].[Breakfast Foods].[Cereal].Children } ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Product Total Percentage])

You find:

Sadly we can’t show this graph in color, when it works much better and
shows plainly that Special products sell really well in February, August and
December.

What happens if you ask for the descendants of a member that has no de-
scendants? The expression will still work, and it will return just the mem-
ber you’ve specified. If you wrote:

Descendants([Time].[1997].[Q1].[1])

just the [1] member itself (that is, January) would be returned.

� You will find when browsing the help system that many of the functions we intro-
duce have even more flexibility and power than we are describing here. The De-
scendants function, for instance, can have any one of seven so called ‘desc_flags’
set in order to modify its behavior from the plain vanilla default that we describe in
this chapter. As we said in the introduction, we don’t feel it’s always helpful to load
you with detail when that extra information is readily available once you’ve got
over the initial learning curve.

92

Navigating the hierarchy

�

Reality check

To overcome the tedious selection problem discussed above, we can now
use a query like:

SELECT
{ [Time].[1997] } ON COLUMNS ,
{ Descendants([Product].[All Products],3)} ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Product Total Percentage])

� In case you were wondering, that tall spike is Snack Foods and the next tallest one is
Vegetables.

93

Navigating the hierarchy

�

and all we have to do is to change the 3 to 4 or 5 to drill further and further
down. We can even use a 6 and drill right down to the individual products.

� There is so much data in the cube once you’re looking four or more levels down that
ProClarity can only display the data as a grid. And, be warned, this query may take
some time to execute because it drills down so far!

Ancestor

The Descendants function lets you work downwards within a hierarchy
and, as you might expect, there is a similar function to work upwards
within a hierarchy – Ancestor. Like Descendants it takes arguments: the
first is the member in which you’re interested and the second is the level at
which you want to find the ancestors of the chosen member. In the Prod-
ucts dimension again, the expression:

Ancestor([Product].[All Products].[Food].[Baked
Goods].[Bread].[Bagels], [Product Department])

works back from the Bagels member to find the corresponding ancestral
member at the Product Department level. That happens to be the member
Baked Goods which is what the function returns.

As with Descendants, Ancestor can also take a numeric second argument
that specifies the number of levels you want to go up in the hierarchy. To
get the same result as the previous expression, you’d write:

Ancestor([Product].[All Products].[Food].[Baked
Goods].[Bread].[Bagels], 2)

94

Navigating the hierarchy

�

and if you wrote:

Ancestor([Product].[All Products].[Food].[Baked
Goods].[Bread].[Bagels], 3)

it would take you one step further back, to the Product Family level and
the member Food. To reach this level by specifying the level by name rather
than by number of steps through the hierarchy, you’d write:

Ancestor([Product].[All Products].[Food].[Baked
Goods].[Bread].[Bagels], [Product Family])

and the result would still be the member Food.

Siblings

Having scaled the heights and plumbed the depths of a hierarchy with the
Ancestor and Descendants functions, we’ll finish by introducing a further
two close relations: Siblings and Cousin.

In human terms, a sibling is a brother or a sister and within a hierarchy it
means the set of members at the same level who share the same parent.
You specify the member for which you want to find siblings and follow it
by the Sibling function, like this:

[Product].[All Products].[Food].[Baked
Goods].[Bread].[Bagels].Siblings

returns Bagels, Muffins and Sliced Bread. Note that the specified member
(Bagels), being by definition one of the collection of siblings, is part of the
set of members returned.

The functions FirstSibling and LastSibling work in the same way as
FirstChild and LastChild:

[Product].[All Products].[Food].[Baked
Goods].[Bread].[Bagels].FirstSibling

returns Bagels – being the first member listed in the level, the Bagels mem-
ber is its own first sibling.

[Product].[All Products].[Food].[Baked
Goods].[Bread].[Bagels].LastSibling

returns Sliced Bread, being the last member in the level containing
Bagels.

95

Navigating the hierarchy

Cousin

Finally, there’s the Cousin function. This works best when there is always
the same number of siblings within a level. The Timedimension is often like
this: years always have four quarters, and quarters always have three
months. January in Q1 is the first month in the quarter and is, for the pur-
poses of this function, deemed to be a cousin of the other three months that
come first in the other quarters, i.e. January is a cousin of April in Q2, July
in Q3 and October in Q4. You use this function by first specifying the mem-
ber for which you want to locate a cousin and then the parent member for
which the cousin is to be found. This sounds complicated, but is easy in
practice. For example:

Cousin([Time].[1998].[Q1].[1], [Time].[1998].[Q2])

returns [Time].[1998].[Q2].[4] because January’s cousin in Q2 is April.

Cousin([Time].[1998].[Q4], [1997])

returns Q4 in 1997.

Having symmetrical levels in a dimension is vital to the predictable use of
the Cousin function as the position of each member determines which
other members it can call cousin.

Summary

Sadly there are no Aunt or Uncle functions to play with, so that brings us to
the end of the functions that let you use relative referencing to navigate a
hierarchy. These functions provide flexible short cuts to moving around a
hierarchy and armed with this knowledge, you should now be able to navi-
gate a hierarchy in a relative fashion.

96

Navigating the hierarchy

Once again, here is a table listing the functions from this chapter, showing
what they require and what they return.

Function Requires Returns

Parent Member Member

Children Member Set

FirstChild Member Member

LastChild Member Member

Descendants Member, level or Member, distance Set

Ancestor Member, level or Member, distance Member

Siblings Member Set

FirstSibling Member Member

LastSibling Member Member

Cousin Member, ancestor member Member

For your entertainment, below are MDX queries that use some of the ex-
pressions we have introduced in this chapter. You can either look at them
and try and work out what they will return, or you can cut and paste them
from the Chap6.txt file into your front-end tool to see what they do.

SELECT
{[Time].[1997] } ON COLUMNS,
Descendants([Product].[Bread],[Product Subcategory]) ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Unit Sales])

SELECT
{[Time].[1997] } ON COLUMNS,
Descendants([Product].[Bread]) ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Unit Sales])

SELECT
{ Cousin([Time].[1],[Q2]) } ON COLUMNS ,
{ [Product].[All Products] } ON ROWS
FROM [Sales_MDX1]

SELECT
{ Descendants([Time].[1998].[Q1].[1],[Month]) } ON COLUMNS ,
{ [Customers].[All Customers] } ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Unit Sales])

97

Navigating the hierarchy

SELECT
{ [Product].[All Products] } ON COLUMNS ,
{[Time].[1997].[Q1].Parent } ON ROWS
FROM [Sales_MDX1]

SELECT
{ [Time].[1997] } ON COLUMNS ,
{ Descendants(Product,[Product Category]) } ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Product Percentage])

SELECT
{ Descendants([Time].[1997],Month) } ON COLUMNS ,
{ [Customers].[All Customers] } ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Unit Sales])

SELECT
{ [Time].[1997] } ON COLUMNS ,
{ Descendants(Product,[Product Category]) } ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Product Total Percentage])

SELECT
{ Descendants([Time])} ON COLUMNS ,
{ DESCENDANTS([Product].[All Products],
[Product].[Product Department]) } ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Product Total Percentage])

98

Navigating the hierarchy

Chapter 7

Snapshot data analysis

Resources:
Starting database – FoodMart2000_MDX1
Cube – Sales_MDX1A
Completed sample database – FoodMart2000_EndChap7
MDX samples – CHAP7.TXT

The MDX functions covered in the last two chapters are more than enough
to get you started on your glittering career solving OLAP cube problems
(or meeting OLAP cube challenges, if you prefer). In this chapter we’ll look
at some business problems that are common to inventory systems and, of
course, we’ll also cover how to cure them. They happen to be well suited to
inventory type problems but, of course, they have many wider applica-
tions. (The sub-text here is “Even if you don’t happen to work with inventories,
these functions are still worth getting to know!”)

We’ll be working with more of MDX’s functions so this seems like a good
time to talk about what they require in order to work, and what they
return. This becomes important when you start writing expressions using
multiple functions. Functions like Descendants and Children return a set
and others, like CurrentMember or Parent, return a member. If you use the
Descendants function to find the sales figures for all the products of a
particular type, for instance, any function you use to further process the
resulting set must be able to accept a set as its input. You would, for
example, be able to Sum the figures or Count them (the Count function is
introduced in this chapter) because both Sum and Count require a set to
work upon.

The take-home message is that you must ensure that each function is given
what it wants and as with many things, it becomes easier with practice and
as you gain familiarity with the common functions. Nobody is expected to
remember the peculiarities of each function – there are well over a hundred
of them. That’s the task of the MDX Function Reference section in the help
system.

99

The general problem

This time we’ll be using the cube called Sales_MDX1A from the
FoodMart2000_MDX1 database. This is an inventory cube with three dimen-
sions – Product, Time and Store – and just one measure, Quantity, which is
the number of items there are in the warehouse.

By default, an OLAP cube sums values which is very often exactly what
you need, but when the values are part of an inventory, this approach
doesn’t reflect reality at all well, as you can see from the table below.

Year Quarter Month Quantity

2000 790 ✘

Q1 120 ✘

January 30

February 40

March 50

Q2 200 ✘

April 65

May 45

June 90

Q3 185 ✘

July 55

August 60

September 70

Q4 285 ✘

October 80

November 100

December 105

� The numbers in the table are for illustration; they’re not taken from the cube.

All the totals for quarters and the yearly total are wrong (they’re marked
with an ✘). You have figures that tell you how many, say, cans of sardines
you had in stock at the end of January, February and March but, come the
end of the quarter, the sum of those three figures tells you nothing about
the state of your stockholding at the end of the first quarter. The value for
Q1 should be 50, which is the March total, not 120, which is the sum of the
January, February and March totals.

100

Snapshot data analysis

�

The general solution

Instead of summing everything, we want to see a snapshot of the figures at
a particular point in time. We also need to generate some more figures in
order for the snapshot to be meaningful.

The specific requirements

So we are going to look at three specific areas:

• Average stockholding – We need to know the average number of items
in stock during each time period

• Closing period – We need opening and closing balances for the period
• Max and Min – We want the maximum and minimum stockholding

levels.

� For each of the first two we’re going to show you two solutions – a ‘brute force’,
inelegant one and an elegant one. Ultimately of course, in a real situation, we’d use
the elegant solution. So why are we bothering to show you the inelegant one? Well,
it isn’t just perversity on our part; we’re using these requirements to introduce
MDX, so the more solutions we can show you, the more MDX we can teach you.
And each of the functions that we introduce in the inelegant solutions is seriously
useful in its own right.

There are MDX functions to deal with all of these requirements (no
surprises there) so let’s start with generating figures for average
stockholdings. We do this by creating new calculated members, just as we
did in Chapter 5. The process of creating calculated members is not covered
again here but you can always flip back to that chapter if you need a
refresher.

The recommended method of building expressions is to break any problem
down into small elements, then build each of those pieces in MDX before
putting them all together to form the whole expression. Setting out your
approach in a concise English sentence or two and/or in pseudo-code
before writing any MDX are other useful steps which can help you orga-
nize your thoughts.

1 Average stockholding

Our first calculated member will be called Average Stock. To find the
average stockholding, we need to take the sum of the quantities for all

101

Snapshot data analysis

�

months in the period and divide it by the number of months in the period.
In Chapter 2 we explained that MDX ‘knows’ about cube structures, and
this is a good example of the usefulness of that built-in knowledge. When
we say period, MDX knows that we have, for example, a quarter level and
therefore a period can be defined or constrained by quarters, and this
knowledge is going to come in handy when we start writing expressions,
which we’ll do now.

We’ll start with a plain English description of what we want to do:

We take the quantity for each month in the period, sum them and divide
the result by the number of months in the period.

Now we can write a tighter description in pseudo-code, a step that’s often
helpful for getting your approach lined up:

Sum(months in the period, Quantity) /
Count(months in the period)

Consider the ‘months in the period’ element: in this case, the period in
question is a quarter and there will always be three months in each quarter.
The Descendants function, introduced in the last chapter, looks as if it
would fit the bill nicely here. We want the Descendants of Time at the
CurrentMember,

Descendants(Time.CurrentMember)

and the Descendants of the CurrentMembermust be at the Month level, so we
force it to look at the Month level and this is the first fragment of our
expression:

Descendants(Time.CurrentMember,[Month])

Descendants returns a set containing the three months in the period. So, we
now know where to look for the values, and now we need to identify the
values themselves as coming from the Quantity measure:

Measures.Quantity

We want to sum the values we’ve just identified, so we’ll use the Sum func-
tion. Generically, the Sum function requires two parameters:

Sum(Set, Numeric Expression)

which is remarkably handy because Descendants returns a set and Mea-
sures.Quantity provides the numerical value:

Sum(Descendants(Time.CurrentMember,[Month]),
Measures.Quantity)

102

Snapshot data analysis

Sum will return a number which we want to divide by another number,
namely the number of months in the quarter. The division process is speci-
fied with the usual / operator.

Sum(Descendants(Time.CurrentMember,[Month]),
Measures.Quantity) /

For the second number, we identify the months with the Descendants
function just as we did in the first part of the expression, but this time we
want to count up how many months there are, instead of finding the sum
of the Quantity for each. This we do with another useful function, Count.

Sum(Descendants(Time.CurrentMember,[Month]),
Measures.Quantity) / Count(Descendants(
Time.CurrentMember,[Month]))

� In this case, Count will always return three because that’s the number of months in
a quarter.

So that’s our first expression and we can use it to create a calculated
measure called Average Stock or AS1 for short.

Good, isn’t it? Well, yes, it’s OK and it works. However, that “Well” and the
“OK” don’t sound overly enthusiastic, do they? The problem is that our
first attempt lacks elegance. It finds averages by brute mathematics, rather
than by making use of the ready-made MDX function called Avg (short for
Average). The same expression built using Avg is shorter, neater and easier
to understand. With our first attempt, if you hadn’t written it yourself (or
even if it was your own work but you hadn’t seen it for several months)

103

Snapshot data analysis

�

you’d have to identify the various elements and work out how they were
being used before understanding the whole expression.

Avg works like Sum: it wants a set and a numeric expression. We generate
the set as before with the Descendants function and the numeric expres-
sion is again provided by the Quantity measure.

Avg(Descendants(Time.CurrentMember,[Month]),
Measures.Quantity)

We could describe this in English as “For whichever current member I’m
looking at, go to the Month level, take the measure Quantity for each month
and give me the average of those figures.”

This one, AS2, is a shorter and more elegant MDX expression.

However, the eagle-eyed amongst you will have noticed that the Average
for 1998 (shown as the last row in this screen shot) differs for the two ways
of calculating the average. If we drill into this:

we find that this is because there is no value for December 1998. AS2 is
calculating the average based on two months, Average Stock (AS1) is calcu-
lating it based on three months because there are three descendants (even
if there are not three values associated with them). Exactly how your

104

Snapshot data analysis

application should handle this is, of course, up to you and your users, but it
is comforting to know that MDX is adaptable enough to give you which-
ever answer you need.

2 Closing period

OK, that’s dealt with average stock, now we’ll work on the closing period
figure. We want the Quarter 1 total to be the same as the total for March, for
Quarter 2 to be the same as June and so on. In fact, we simply want to find
the quantity for the last month in the period. We’ll call this calculated
member Closing Period – CP1.

When writing our first expression we found a good way of identifying all
the months and their values:

(Descendants(Time.CurrentMember,[Month]), Measures.Quantity)

so let’s use this again. The only problem is that it returns three numbers,
one for each month in the period and we want the last one. Does MDX
have anything up its sleeve to help? Yes, and it’s a function called Tail.

The Tail function returns one or more items from the end of a set and it al-
ways returns its answer in the form of a set. It requires a set to work upon –
we can provide that with the code above – and also the number of values
you wish it to return.

(Tail(Descendants(Time.CurrentMember, [Month]), 1),
Measures.Quantity)

Here we’ve told Tailwe want the last member from the set returned by the
Descendants function.

Great, it looks as if we are almost there. But first, a couple of questions.

Q. Why are we creating this expression?
A. In order to find a closing period member.
Q. What does the Tail function return?
A. A set. Aah...

Yup, a fatal mismatch error is about to occur. This is an excellent example of
why you need to be constantly aware of whether you’re dealing with sets
or members (or numbers or strings). We need a new function to resolve the
potential mismatch by extracting the member from the set, and it’s the Item
function.

The Item function locates a specific member within a set. Item inspects the
members and, in effect, indexes them all. It calls the first item in a set 0, the
second 1 and so on. We know the set returned by Tailhas but one member,

105

Snapshot data analysis

so we want Item to pick up the first and indeed only member. We can see
this best if we focus in initially on just the part of the complete expression
that uses Tail:

Tail(Descendants(Time.CurrentMember, [Month]), 1).Item(0)

(Note that the set to be used by the Item function is placed in front of the
function name and that there is a dot between the set and the function.)

The complete expression is:

(Tail(Descendants(Time.CurrentMember, [Month]), 1).Item(0),
Measures.Quantity)

and it works fine.

� There is, as discussed, no closing balance for 1998 as yet; it will appear when data
for December 1998 is entered.

So, it works, but a short cut is open to us: we can use another of MDX’s
ready-made functions, ClosingPeriod. The ClosingPeriod function needs
to know the level and the member in which you’re interested – in this case,
Month and Time.CurrentMember respectively. Given that information,
ClosingPeriodwill return the last member found at the specified level. The
expression would look like this:

(ClosingPeriod([Month], Time.CurrentMember),
Measures.Quantity)

The result is exactly the same but the expression itself is more readable and
more elegant.

106

Snapshot data analysis

�

The OpeningPeriod function works in the same way except it returns the
first member found at the specified level.

3 Maximum value

The third problem is how to get the maximum value for a period; this will
be a calculated member called Max For Period, or MaxFP for short. We’ll use
our tried and tested method of identifying all the months and their values:

(Descendants(Time.CurrentMember,[Month]), Measures.Quantity)

and combine it with a function called Max (Maximum), which, when given a
set and a numeric expression, will return the largest value from that set.
The Descendants function provides the set, Measures.Quantity provides
the numeric expression and so this code:

Max(Descendants(Time.CurrentMember, Month), Measures.Quantity)

will do what we want.

Below we can see that the maximum stockholding for the second quarter is
the June total and for the third quarter, it’s the July figure:

� The Min (Minimum) function works in the same way except it returns the smallest
value from the set.

Min(Descendants(Time.CurrentMember, Month), Measures.Quantity)

107

Snapshot data analysis

�

Why use Descendants?

Right at the beginning of this chapter we made the decision to use the
Descendants function in the new calculated members. You might wonder
whether we could, or why we didn’t, use the Children function instead.
The answer is that we could, but if we did it would be answering a different
question because of the different way in which the functions work.

Descendants has the flexibility to return information about, say, the Max
value for a month, no matter where we are in the cube.

Children will always be relative to a member so for Children to work, we
would have to say “give me the Children at the Quarter level”, which
would return the months, but the expression wouldn’t work if we were at
the Year level instead of the Quarter level. The expression would have
been hard-coded to work with Quarters only.

By using Descendants in combination with the CurrentMember function, we
are able to write the expression so that it will behave dynamically. Wher-
ever attention is focused, the function is directed to the Month level and
hence to the members of the Month level. So even if we are at the year level,
we can see the maximum monthly value for that year.

However, depending upon the question you want to ask, there is no rea-
son at all why you can’t use the Children function. For example, if you cre-
ate a calculated member called, say, Max Child, that reads:

Max((Time.CurrentMember.Children), Measures.Quantity)

it will return the maximum value for the level underneath the current one.
At the year level it shows us the maximum quarterly value for that year.

108

Snapshot data analysis

Summary

We’ve introduced the following new functions in this chapter, including
the nifty Item function which is incredibly useful if you have a set and need
a member.

Function Requires Returns

Sum Set, numeric expression Number

Count Set Integer

Avg Set, numeric expression Number

Tail Set, count Set

Item Set, index number Member

OpeningPeriod Level, member Member

ClosingPeriod Level, member Member

Max Set, numeric expression Number

Min Set, numeric expression Number

109

Snapshot data analysis

Chapter 8

Moving averages

Resources:
Starting database – FoodMart2000_MDX2
Cube – Sales_MDX2
Completed sample database – FoodMart2000_EndChap11
MDX samples – CHAP8.TXT

Over the last few chapters you’ve taken several steps along (and up) the
MDX learning curve and we’ve started to open the door to a great deal of
functionality. In this chapter we’ll continue the progress by looking at
moving averages. These are useful analytical tools which can be used to
solve very common business problems.

Moving averages are particularly well suited to tracking the behavior of
financial indicators such as Nasdaq in the US or the FTSE 100 in the UK, of
specific share prices or indeed of any data collected over time. The graph
below represents the behavior of the Nasdaq combined composite index
over the period of a year.

The line marked A shows the daily figure. (A color rendition of this graph
would be really helpful here, but regrettably we’re limited to mono-
chrome.) There are three additional lines on the graph which represent the

110

moving average of the index over various periods of time. The line labeled
B is a ten-day moving average, line C is a fifty-day moving average and line
D is a 200-day moving average.

One reason for using moving averages with stock market data is that the
market is very volatile and the index changes very rapidly. If we want to
improve the chances of catching a trend, we want to smooth out this
rapidity of change over a period of time so we can see more general ups
and downs rather than short-term blips. Choosing the period over which
smoothing is performed is very important, as you can see from the graph
above. Looking at line D, the 200-day moving average with its gently
curving path, we can see that its peaks and troughs are very shallow: the
longer the period over which we take an average, the smoother the line
produced. The trade-off here is if you take an average over too long a
period, the line will just look flat and it won’t help you to see any trends.
Looking at line B, the ten-day moving average, it’s again hard to spot
trends because of the large number of peaks and troughs in an average
taken over a shorter period. Experience, experimentation and knowledge
of your data will guide you towards determining moving averages that let
you see the level of detail you need. I don’t know if anybody looking at this
graph could predict what will happen next, but that’s the idea that drives
the use of moving averages with market data.

A simple moving average

Working with the Sales_MDX2 cube from the FoodMart2000_MDX2 database
(which we’ll be using for this and the next three chapters), we are going to
create a very simple moving average. We’ll average our sales, using the
data in the Unit Sales measure, over a three month period. This means
that whichever month we’re in currently, we’ll want to take the average of
that month, the month immediately before it and the month before that. In
pseudo-MDX the expression looks like this:

Avg({this month, last month, the month before that},
[Measures].[Unit Sales])

The data for each month in the set is taken from the unit sales measure.

Let’s talk about our game plan and how we are going to approach writing
this expression in proper MDX. We know about the Avg function (from the
previous chapter) so calculating the average is no problem. We want the
current month and the prior two months – and there’s a problem brewing
with our pseudo-code approach because we are specifying each month

111

Moving averages

individually. There are three months to list in the expression, which is
boring enough to write, but if we wanted an average over ten months or 60
days or whatever, writing the expression would be totally tedious. Can we
persuade the Lag function (from Chapter 5) to help here?

Lag will take us to a cell that’s a specified number of cells back from our
current location so on its own it’s not quite going to do the trick because
we’re looking for a series of cells. Happily Lag returns a member. This is
very handy because a member is exactly what a ‘range operator’ needs;
and we can use a range operator to give us our series of cells.

A range operator is a colon – : – and works just as it does in an Excel for-
mula like:

=SUM(B3:B16)

which adds up the values in cells B3 through B16.

So we can say:

Time.CurrentMember.Lag(2): Time.CurrentMember

which means take the set of cells made up of the cells named and all of the
cells in between them. This is extremely useful because the range operator
is a shorthand way of identifying large numbers of cells very quickly.

We can create a new calculated member called MA (Moving Average) and the
complete expression it uses would look like this:

Avg(Time.CurrentMember.Lag(2): Time.CurrentMember,
Measures.[Unit Sales])

112

Moving averages

It starts with the Avg function, identifies a set for it to work upon, and tells it
which values to use. If we plot the data with a front-end tool, it looks rea-
sonable:

but are we sure that Moving Average is producing the right answers? These
are the numbers it produces.

Month 1997 Unit Sales MA

1 21,628.00 21,628.00

2 20,957.00 21,292.50

3 23,706.00 22,097.00

4 20,179.00 21,614.00

5 21,081.00 21,655.33

6 21,350.00 20,870.00

7 23,763.00 22,064.67

8 21,697.00 22,270.00

9 20,388.00 21,949.33

10 19,958.00 20,681.00

11 25,270.00 21,872.00

12 26,796.00 24,008.00

113

Moving averages

Whip out with your chosen arithmetical assistant (calculator, Pocket PC,
abacus, whatever) and check. Sure enough, the Moving Average figure
calculated for months 3 to 12 is correct. For example, the figure for month 8
should be:

(21,350.00 + 23,763.00 + 21,697.00)/3 = 66,810/3 = 22,270.

But what about months 1 & 2? Our expression assumes that we are lagging
two periods behind. Our data starts with the first month of Q1 of 1997; so
what does MDX do when asked to calculate the moving average for
January 1997 which has no cells to ‘lag’ to, and for February 1997 which has
only one? Happily, MDX takes the approach that when there are no values,
it just does what it can. It doesn’t break or sulk, it just uses what’s available.
Thus, as we can see in the table above, the moving average for January is
the same as the unit sales figure because that unit sales figure is all MDX
has available. For February, the moving average is calculated by adding the
two unit sales figures that are available (those for January and February)
and dividing by two. For the March moving average, MDX finally has unit
sales figures from three periods to work with and the moving average is
calculated exactly as the expression specifies.

The same is true for the quarterly moving averages: the first one calculated
from three figures is that for Q3 because this is the first quarter with unit
sales figures for two preceding quarters.

114

Moving averages

And we only have enough data for the yearly moving average ever to be
calculated from two figures, the unit sales totals for 1997 and 1998.

Our expression certainly works, but looked at from a business perspective
there is some room for improvement.

A more complex moving average

At present, regardless of where we are in the Time dimension we are
lagging two periods and that doesn’t always reflect a typical business
scenario. While a three-month moving average is sensible enough, a three-
day moving average is less likely to be of use. One over thirty days is a more
common requirement. Also, a two-quarter moving average might be more
appropriate than one generated over three quarters. And finally, in this
instance, as we only have values for 1997 and 1998, we actually just want to
look at the current year without calculating any moving average over the
years.

Let’s take a slightly more complex approach to finding a moving average
and create a calculated member called CMA (Complex Moving Average). We’ll
use the formula that we’ve just defined (shown below) and look again at
the way we’ve used the Lag function.

Avg(Time.CurrentMember.Lag(2): Time.CurrentMember,
Measures.[Unit Sales])

Ideally we want Lag to act intelligently and to change its behavior depend-
ing on where we are in the hierarchy. If we’re at the month level, we’re
happy for it to Lag(2) as it is already doing, but if we’re at the quarter level,
we want it to Lag(1) to give us a two-quarter moving average and at the
year level, we don’t want it to lag or calculate anything.

If month: Lag(2) : Current
If quarter: Lag(1) : Current
If year: Lag(0) : Current

Adding intelligence to the Lag function is going to revolve around a couple
of new functions; the first is the Level function. This is a means of finding
out where we are in the hierarchy. Level returns the level object for a par-
ticular member and its syntax is straightforward. Given our data, the fol-
lowing code:

Time.CurrentMember.Level

will return either Year, Quarter or Month (being the three levels in the Time
dimension), depending on where we are.

115

Moving averages

The second function we are going to use is the Immediate If function, Iif.
This function is by no means unique to MDX, it is found in many computer
languages. It’s an extremely useful function that we are going to use
throughout this chapter. Immediate If takes three parameters, the first of
which is a condition to be evaluated. The second parameter tells the func-
tion what to do if the condition is met (that is, if it’s found to be true) and
the third parameter tells the function what to do if the condition is not met
(if it’s found to be false).

Iif is able to return either a number or a string: here we want it to return a
number which will be the number of periods to lag for the current level.

Our Iif function needs to evaluate three possible conditions – whether the
level is Month, Quarter or Year. If you haven’t used Iif before, you may
think that we would need three Iifs to accomplish this, but in fact we can
do it with two – one nested inside the other.

The first Iif determines whether we are at the Month level. If this turns out
to be true, we want the Lag function to be passed a 2. If it turns out to be
false, then logically we must be at either the Quarter or the Year level. So
we need another Iif to distinguish between those possibilities and pass
the Lag function the appropriate value. This other Iif function is wrapped
up (or nested) inside the first, and it asks whether we’re at the Quarter
level. If the answer to this is “true”, Lag is passed a 1, but if the answer is
“false” then we must be at the Year level, so we want a zero passed to Lag.

The nested Iif functions look like this:

(Iif(Time.CurrentMember.Level is Time.Month, 2,
Iif(Time.CurrentMember.Level is Time.Quarter,1, 0)))

The first one says if the level is month, return the number 2 and the second
one says if the level is quarter, return 1 and if the level is neither month nor
quarter, return a zero. The number returned by the Iif functions is then
fed to the Lag function to tell it how many periods it is to use to calculate the
moving average. This is the complete expression:

Avg(Time.CurrentMember.Lag
(Iif(Time.CurrentMember.Level is Time.Month,2,
Iif(Time.CurrentMember.Level is Time.Quarter,1, 0)))
: Time.CurrentMember, Measures.[Unit Sales])

� We’ve split this expression over several lines in the hopes of making it more
readable.

116

Moving averages

�

Looking back at our first expression (shown again below for easy compari-
son) you can see that the (2) that drives the behavior of the Lag function
has been replaced by the two nested Iif functions.

Avg(Time.CurrentMember.Lag
(2)
: Time.CurrentMember, Measures.[Unit Sales])

To the right of those Iif functions in our new expression you’ll see the
range operator is still present and, just as before, it points to the current
member for the Unit Sales measure.

Save the cube and the figures should be as you expect.

� (This screen shot has been pruned to remove the figures for Sales so that it fits the
page better. Your mileage may vary, but no data was harmed in the production of
this screen shot.)

A few moments with your arithmetical assistant should convince you that
the expression is doing just what we want and follows the same pattern as
before, using as many values as are available in order to fulfill its task.

One last thing – we introduced the Level function so it seems only fair to
also mention the Members function, which is very similar. It will work with a
dimension or a level and returns a set of member objects.

Time.Members

returns every member at all levels in the Time dimension.

Quarter.Members

117

Moving averages

�

returns all the members at the Quarter level (Q1 through Q4 twice, once for
1997 and once for 1998).

Summary

Hopefully you’re convinced that it’s easy to create moving averages in
MDX. (If you’ve ever tried this in SQL you’ll know it’s a very difficult thing
to do.) In order to create moving averages we introduced three new func-
tions: the Level function which returns the location within a hierarchy, the
Members function that returns the members from a specified level and the
Immediate If or Iif function that’s used to define your expression so that it
behaves differently depending upon how a condition is evaluated.

Function Requires Returns

Level Member Level

Members Level or Dimension Set

Iif Condition, what to do if true, what to do if false Number or string

118

Moving averages

Chapter 9

Filters

Resources:
Starting database – FoodMart2000_MDX2
Cube – Sales_MDX2
Completed sample database – FoodMart2000_EndChap11
MDX samples – CHAP9.TXT

It is a common requirement to want to extract a subset of the data in a cube
depending on whether it meets certain criteria. For instance, you may want
to identify any periods in which the sales of many products fell, compared
with the sales for the previous period. What we want here is a ratio: we
want to take a count of products whose sales fell (when compared to the
last period) and divide that by the count of all products. The count of all
products with falling sales is a subset of the count of all products and in or-
der to resolve this, MDX has a Filter function which is used to identify
subsets of data.

Our approach will be firstly to find out which products suffered a drop in
sales and then count how many such products there are. Next we’ll find
out how many products we have in total and then we’ll define a calculated
measure to divide the product total by the number that fell to produce the
ratio, or proportion, of products with sales that fell.

The first part of the description above, where we say we’re looking for
products that had a drop in sales, should tell you that we’re looking for a
set.

� As we’ve said before, it’s good to always have a clear idea of what you’re dealing
with at any point – a set or a member, a number or a string – so that you can ensure
you deliver what’s expected to the MDX function you’re using.

It should also be clear that the set will be composed of products and that no
matter where we are in the product hierarchy, we are looking at products.

119

�

That statement should hint to you that we are going to be looking for the
CurrentMember at a certain level.

We’re working with the Sales_MDX2 cube from the FoodMart2000_MDX2
database. As we can see below, there are seven levels in the Productdimen-
sion (if we include the All level) and as we’re dealing with individual prod-
ucts here, the one we’re interested in is the last one, called Product Name.

In Chapter 6 on navigating the hierarchy we introduced the Descendants
function and here we’ll use it in earnest to return a set of products. We
want it to return the descendants of the current member in the Product di-
mension at the Product Name level. This is the first step towards our
expression:

Descendants([Product].CurrentMember, [Product Name])

which finds all the products that are below the current member in the hier-
archy at the Product Name level.

We are going to build our final expression in stages. In order to reduce the
visual complexity of the intermediate steps, we’re going to temporarily
substitute the text ‘SetOfProducts’ for the above expression. This is a useful
trick when you are building expressions for yourself.

Now we have this set, we want to know how many of them had a drop in
sales, so we’re now looking for a set within the set we’ve just identified.
This is where the Filter function comes in. It requires a set and a condition
to evaluate; once it has evaluated the condition, it will return a subset. In
this case, Filter will look at the set of all products and generate a subset. It
will inspect the unit sales value of the current member of the Time dimen-
sion and, if this value is smaller than the unit sales value of the previous
member in the Time dimension, then sales have fallen and it will be in-
cluded in the subset.

120

Filters

Here’s the second step in our expression:

Filter(SetOfProducts, ([Time].CurrentMember, [Unit Sales]) <
([Time].PrevMember, [Unit Sales]))

As we said, ‘SetOfProducts’ is simply a marker to show where our first ex-
pression will go in the finished code. Also, remember that Time.PrevMember
is a shortened form of Time.CurrentMember.PrevMember.

Now we have the subset of products which had a drop in sales and need to
know how many products the subset contains. For this we can use the
Count function, placing it in front of the Filter function:

Count(Filter(SetOfProducts, ([Time].CurrentMember,
[Unit Sales]) < ([Time].PrevMember, [Unit Sales])))

in order to get a count of the members in the subset.

To finish off the expression we need to count how many products we have
in total. That information was contained in the unfiltered set we generated
with the Descendants function, so we can use that part of the expression
again, preceding it with Count, like this:

Count(SetOfProducts)

That’s the job done, all we have to do is to plug the components together:

Count(Filter(SetOfProducts, ([Time].CurrentMember,
[Unit Sales]) < ([Time].PrevMember, [Unit Sales])))
/
Count(SetOfProducts)

and finally replace the SetOfProducts marker with the code segment we
wrote as the first step.

Count(Filter(Descendants([Product].CurrentMember,
[Product Name]),
([Time].CurrentMember, [Unit Sales]) <
([Time].PrevMember, [Unit Sales])))
/
Count(Descendants([Product].CurrentMember, [Product Name]))

The first Count function returns the number of products with sales that fell
and the second Count function returns the total number of products, so in-
serting the divide operator between the Count functions divides the first
number by the second.

This will tell us the ratio of products that fell in any period.

121

Filters

� It is worth noting here that if you wanted to support different types of analysis you
could define the two Count functions as separate calculated measures and then de-
fine a third calculated measure that put them together. You’d have three calculated
measures: one would give you the count of products with sales that fell, the second
would give you the count of all the products in the Product dimension and the third
one would be the complete expression which generates the ratio of products with a
drop in sales.

Create a new calculated member called Products Down and enter the MDX
code, checking to see that it passes the syntax check, and look at the new
column of data.

We have every confidence that the expression itself is OK, but the fractions
are being expressed to an annoying number of decimal places and we
might wonder why some of the data is appearing as zeros – indicating that
sales of none of our products fell, which seems unlikely.

122

Filters

�

The first issue is simply the default display setting. The values we’ve gener-
ated are ratios, and a ratio is another way of describing a percentage. By
default the Cube Browser uses the standard number format string for all
the numbers it displays. The answer is to change the format string. High-
light the Products Down member in the Tree Pane and then click on the
Advanced tab in the Properties display, locate the Format String property:

and, from the pop down the list of formats, select Percent. The Products
Down column now looks much more sensible:

� Bear in mind that we are changing the display format here in Analysis Services, not
in your front-end tool. If, for example, you view the new calculated measure from an
Excel pivot table, even after you’ve changed the format string to percent, Excel
shows the values as fractions to many decimal places. You have to format the cells in
the pivot table itself in order to see the values as percentages. Other front-end tools,
like ProClarity, will pick up the format string and display the data as you requested.

The second issue is that some of the time periods show a value of 0.00%; for
example, the year 1997, and the first quarter and first month of that year.
This is because the FoodMart corporation began selling in 1997 so there are
no figures for the preceding period and therefore no comparison can be

123

Filters

�

made. The total for 1998 is also zero, and that’s because the value for the
previous period (the 1997 total) is itself zero.

The good news is that the expression is working but from a business angle
the news is far from good. Look at the figures from 1998.

� We haven’t included the December 1998 figures here because, as discussed, there
are no sales figures for that month.

Sales fell for almost half of our products in this year.

124

Filters

�

Let’s look at which products are affected.

Apparently drink sales fell the most at 60%. So let’s drill down into drinks
and find out more information.

125

Filters

Now we can see which category of drink contributes most: it’s alcoholic
beverages which fell by 62.5%.

� This is a powerful indication that we’re working with sample data here – when did
alcoholic beverages ever show falling sales in reality?

Building the Products Down calculated member has given us a whole new
perspective on our data. OK, it may be nonsensical data in this instance but
you get the idea. We’ve just demonstrated how, by using this relatively
simple calculated member, we can start performing some very powerful
analysis. We can go even further and drill down to find exactly which
products sell least well and then try to analyze by some other dimension to
find out why this might be so.

Summary

Those are the business benefits but what about our progress with the MDX
language?

Once again we used the Descendants function: this, as you know by now, is
an extremely powerful and versatile function. In this case we use it to
ensure that a function works at a specific level. Often this will be the lowest
level of a hierarchy, as in our example, but this is not necessarily so.

126

Filters

�

It is also worth pointing out again that it’s easiest to construct these
complex expressions one piece at a time. It would be a very difficult task to
start with the original problem statement and try to write a complete
expression. The best way to go about it is to break the whole big problem
up into little problems, to find the small expressions that solve the little
problems and then put those all together.

Lastly we saw how you can use the Filter function to narrow down a large
set to just a subset that contains the data that interests you.

Function Requires Returns

Filter Set, condition Set

127

Filters

Chapter 10

Setting the default member

Resources:
Starting database – FoodMart2000_MDX2
Cube – Sales_MDX2
Completed sample database – FoodMart2000_EndChap11
MDX samples – CHAP10.TXT

Up to this point we have written expressions that only reference one, two
or maybe three dimensions. Behind the scenes MDX is actually generating
an expression that applies to all the dimensions. In the background the sys-
tem takes the default member of each dimension and appends it onto the
expression. The default member for a dimension is usually at the All level,
and the All level typically has only one member – All. So for the Product
dimension the default member is All Products; you could say that All
Products is the default default member.

So dimensions have default members: why should this concern us as it
appears not to have had any impact on our use of MDX thus far? While it’s
true that it doesn’t necessarily affect database administrators (DBAs) who
prepare cubes for use by others, those others – the business users whose
requirements we are servicing – may take a rather different view.

Take the FoodMart Corporation’s cube, for instance. The Time dimension
doesn’t have an All level; Year is the highest level in the Time dimension.
The default member, therefore, will be the first member at the Year level,
which is 1997. In the screen shot below the Cube Editor (at the top of the
screen when you are using the data tab) is showing the default members
for the Product, Store and Time dimensions: they are All Products, All
Stores and 1997 respectively.

128

So what’s wrong with year 1997 being the default member? Firstly it’s
several years ago and so the data isn’t at all up-to-date, and secondly it’s
not the most recent year for which we have data. Users working with the
cube are most likely to want to start with the most recent data and they
won’t be happy with having to navigate to the current period every time.
This particular default member is quite likely to been seen as a problem by
business users, though discontent will be expressed in different terms;
perhaps “Why does it always show me those ancient figures? Doesn’t it
know we’re in 2002?”

In our sample cube the most recent year is 1998, so we can just make that
the default member for the Time dimension. That’ll fix it... won’t it? Well,
yes, but only for twelve months. If you take this approach, every year you’ll
have to change the default member manually for every cube with a Time
dimension. This is not at all an elegant solution: there must be something
better we can do.

Indeed there is. We can set the default member of the Time dimension to
act dynamically so that it will, in effect, be able to identify the current year
and present that data to the user as the default.

Defining a custom default member

We’ve already met the function that will be of great help here; it’s the
LastSibling function introduced in Chapter 6 which looks at all the
siblings of a member and returns the last one.

� The way LastSibling works implies that the members in a dimension are ordered
somehow. For now, it is safe to assume it’s normal to have years sorted from the
most recent back to the furthest away in time. In Chapter 14 we show you how to set
up custom orders if you want to alter the default.

Typically, Siblings are defined as members with the same parent. What about mem-
bers that don’t have a parent, as is the case at the highest level in a dimension, and as
is true for the members at our Year level? As you might expect, Siblings is simply
taken to refer to all the members at that level.

We can pick an existing member of the year dimension, say, 1997, and
apply the LastSibling function to it so it will return the most recent year.

129

Setting the default member

�

Here we’ll need to edit a dimension for the first time, so we won’t be using
the Cube Editor. Instead, we need the Dimension Editor. In the Tree view
of the cube in Analysis Manager, expand the view of Shared Dimensions.

130

Setting the default member

Right click on the Time dimension and select Edit.... In the Dimension
Editor, click on the Advanced properties tab and highlight the Default
Member property.

131

Setting the default member

Click on the ellipsis button and in the Set Default Member dialog you can
see that there is presently no custom default member setting for the Time
dimension.

From here you can pick any of the members in the Timedimension to be the
default member, and it can be any member at any level. Members with chil-
dren at lower levels can be expanded and collapsed with a click in the usual
way. Alternatively you can write an MDX expression to specify the default
member, and as this is a book all about MDX, we’ll do the MDX thing.

You can type the MDX expression directly into the slot in the dialog, which
is easy with a brief expression like this one, or you can click on the ellipsis
button to open the MDX Builder for building more complex expressions.
We’ll just type:

[1997].LastSibling

This expression takes the year 1997 and finds its last sibling which in our
data-starved cube will be 1998, but if we added data for another five years,
the expression would point to 2003.

132

Setting the default member

Save the change to the dimension, and browsing the cube with the Cube
Editor, we can see that the default member for Time is now 1998.

So now users will always be able to see the most recent data when they start
work with our cube and the DBA can relax knowing that the problem has
been fixed for keeps with a dynamic solution.

Defining a different custom default member

Unfortunately, DBAs can rarely relax for long: here’s another problem
brought to you by a cube user near you. “It’s great that I can see data from
the most recent year, but why do I then have to filter to look at the current
month? I want to see the current month’s data as soon as I start.”

It appears the default member needs another tweak. This calls for the
LastChild function which returns the last child of a given member. We
want the last month, which can also be described as the last child of the last
quarter.

Go to the Dimension Editor again and edit the default member. The start of
our expression is fine – we still want it to find the last sibling of 1997. But
now we also want to find the last child of this last sibling (which will be the
last member at the Quarter level), and the last child of last quarter (which
will be the last member at the Month level). So we can write:

[Time].[1997].LastSibling.LastChild.LastChild

Save the dimension and browse the cube. The default member for Time has
certainly changed: it now says 12 instead of 1998. Excellent. Click on the
down arrow button to the far right of the Time dimension display and
you’ll see this tree view.

133

Setting the default member

However, when you look at the data display...

it doesn’t look so good. There is no data. The new default member assumes
that data is present for every month in the Time dimension but in our
sample cube, there is no data for December 1998. In fact, if the Time dimen-
sion was defined to accept data up until 2003, our default member would
happily open up in 2003 regardless of the fact that the last available data is
for November 1998. Basically, it’s not working at all well.

� You may also have wondered, having read about elegance in MDX code, about the
ungainly appearance of an expression ending LastSibling.LastChild.
LastChild. If so, your wonderings have proved well placed; we can do better than
this.

How do we fix things so that the cube opens at the last month that has data
associated with it? We need an even more dynamic default member that in
some way identifies the last month that contains data. This is quite a
common business problem, especially for inventory and other retail
systems.

Defining a fully dynamic custom default
member

We’ll demonstrate one approach to solving this problem using the Filter
function and a new function called IsEmpty. The IsEmpty function
performs a very simple task: it takes an expression and will return either
minus one or zero, depending on whether the expression will evaluate to
an empty cell or not.

� The IsEmpty function is essentially answering the question “Is this cell empty?” in
Boolean logic. It can only ever give one of two answers: either minus one which
equates to true (i.e. the cell is empty) or zero which equates to false (no, the cell is not
empty, it has content).

134

Setting the default member

�

�

We want to look at all the months, filter out all those that are not empty and
then pick up the last not-empty one. We start with the Filter function and
the set we want it to work upon is a set of all months. Finding all the
months is easy: we go to the Month level and use the Members function to re-
turn all months:

Filter([Time].[Month].Members,...)

The Filter function now needs a condition to evaluate so it can return a
subset of all months. We want to identify the months with data using the
IsEmpty function, but we want to flip IsEmpty round so it returns not the
ones that are empty but the ones that have data in them. This we do by
putting NOT in front of it, like this:

Filter([Time].[Month].Members, NOT IsEmpty...)

Lastly, we want to point NOT IsEmpty at the current time period.

Filter([Time].[Month].Members,
NOT IsEmpty(Time.CurrentMember))

This is the completed Filter function which identifies all the months with
data. Now we want to pick out the last one so we can use it as our default
member. This is where we use the Tail function again, an old friend from
Chapter 7. We want the last element of the set:

Tail(Filter([Time].[Month].Members,
NOT IsEmpty(Time.CurrentMember)), 1)

We’re almost there. But, once again, Tail is going to return a set and we’re
going to need a member. So, once again, we’ll use the Item function to re-
solve the potential mismatch and extract the member from the set (as cov-
ered in Chapter 7).

Tail(Filter([Time].[Month].Members,
NOT IsEmpty(Time.CurrentMember)),1).Item(0)

This is the complete expression that will identify the last month with data
for use as our custom default member.

� To be slightly more accurate, this expression finds the last month that appears in the
fact table, rather than the last month which has values for any or all measures. To
illustrate what we mean, suppose we add to this fact table a single row for
1 December 1998 that has null values for all of the measures. As far as our
expression is concerned, there IS now a value in the fact table for December 1998, so
that becomes the default member for the time dimension; even though there are no
values for any of the measures in December 1998.

135

Setting the default member

�

Now we know what to write, return to the Dimension Editor and enter the
expression as the default member (this is where the MDX Builder comes
into its own). Save the dimension and browse the cube. Miraculously, the
default member for the Time dimension has changed again, this time to
month 11 in 1998:

which, as we know, is the last month with any data.

Default measures

Incidentally, you can also set a default measure for a cube. This is one of the
basic properties for a cube and it identifies the measure to be returned by
an expression if no measure is specified by that expression. It is not obliga-
tory to set a default measure; if you don’t, expressions that don’t define a
measure will still work, they’ll just return an arbitrary measure.

136

Setting the default member

Summary

It’s all taken a long time to explain, but you’ve been learning hard all the
while and another new function, IsEmpty, has been introduced. It can be
used as it stands or with its behavior flipped by adding NOT.

Equally importantly, you’ve seen how something that starts out as a static
setting, such as the default member, can be made so dynamic that it can
change automatically as alterations are made to a dimension. Both time
periods and data can be added to the cube and the dynamic MDX expres-
sion just takes it all in its stride.

Finally, the method of building expressions incrementally has again
proved its worth.

Function Requires Returns

LastSibling Member Member

LastChild Member Member

Filter Set, condition Set

IsEmpty Expression Boolean

Members Level or Dimension Set

Tail Set, count Set

137

Setting the default member

Chapter 11

Member properties and
dimension security

Resources:
Starting database – FoodMart2000_MDX2
Cube – Sales_MDX2
Completed sample database – FoodMart2000_EndChap11
MDX samples – CHAP11.TXT

Member properties

You may recall that we touched briefly upon member properties back in
Chapter 1. Now we’re going to take a further look at them and see how the
value of these properties can be maximized using MDX.

A member property is an additional piece of information about a particular
member that is relevant only to that member. In a Customer dimension, for
instance, customers might have properties that tell us, say, their address
and email address. In the Store dimension, each store might have proper-
ties to indicate how many parking spaces it has to offer its customers, the
name of the current manager, the type of store and/or, to quote the
example from Chapter 1, the size of the store.

Member properties are often used to store the information that will be
useful for analysis in a cube but which wouldn’t make a very sensible
dimension – it’s hard to imagine what value a ‘customer parking’ dimen-
sion might bring to a cube. However, just because data doesn’t sit well in a
dimension doesn’t mean it can’t be useful. The information that we are able
to hold as the property of a member can be immensely valuable and can be
used to improve analyses and inform business decisions.

138

How can you find out if a member has any properties associated with it? In
the tree view that’s shown to the top left of the Cube Editor, expand the
Store dimension to see the levels in the hierarchy and expand the Store
Name level. You’ll see a folder called Member properties and if you expand
that,

you’ll see that members at the Store Name level have three properties:
Store Manager, Store Sqft (square feet) and Store Type. This view doesn’t,
of course, tell us whether there is any data for any of the properties for any
of the stores. To find that out, we need a new MDX function.

It’s the Properties function and its role is to let you query member proper-
ties. Simple to use, all you need to know is the name of the member and of
the property that interests you: the member name is placed in front of the
Properties function and the property name comes afterwards, like this:

Store.CurrentMember.Properties("Store Manager")

� The Properties function always returns a string so keep this in mind as we
proceed.

This expression will return the name of the manager for the current store.
So, if you use it to create a calculated measure called, say, Store Mgr, then
this MDX query:

SELECT
{ [Time].[1998] } ON COLUMNS ,
{ Descendants([Store].[All Stores].[USA],3) } ON ROWS
FROM [Sales_MDX2]
WHERE ([Measures].[Store Mgr])

139

Member properties and dimension security

�

will show you the managers of all the stores in the USA.

So we can see that the manager of the Salem store is Inmon. Whether this is
the Inmon (as in ‘Bill’, the ‘father of data warehousing’) or just any old
Inmon isn’t clear but since this is only sample data we don’t really care.

What we do care about is using member properties to solve real business
problems. So we’ll introduce another business scenario, one in which our
company sells data about different stores. In this scenario the stores may
well not belong to our company, we are just in the business of selling data
about stores. We have a scheme for attracting buyers of our data which is to
give away the data about small stores as a kind of loss leader to hook in
customers. If customers decide they want data about the larger stores, then
we’ll start charging them.

Dimension security

This scenario is also a good opportunity to bring in another of MDX’s
useful features, that of dimension security. In order to describe dimension
security, we’ll start with a brief and simple overview of the way in which

140

Member properties and dimension security

Analysis Services lets you control the ways users can access databases and
cubes.

Analysis Services employs roles (database roles and cube roles) in order to
control access to databases. A role is a convenient way of controlling what
actions a user can perform within the database: when a role is defined,
various permissions can be granted which allow a user read-only access,
for instance, or read/write access.

Once a database role has been defined, users can be allocated to it and each
user will automatically be granted the permissions specified in the role.
The database role can also be allocated to any cube in the database. The
allocation process will create a cube role with the same set of permissions as
the original database role. The cube role can then be tweaked to include
any extra permissions (or to remove existing permissions) for the cube. A
cube role applies to a single cube.

The default in a cube role is to allow all members to see all dimension
members in a cube. One of the more advanced examples of cube role
tweaking is to restrict access to dimensions and this brings us to our current
topic, dimension security. We’ll cover more of the whys and wherefores as
we solve our new business problem.

Using member properties and dimension
security

In order for our loss leader scheme to work, we need to be able to restrict
access to data in the stores dimension; in other words, to define the dimen-
sion security for the stores dimension so that we can give two sorts of
access. One will be unrestricted access to the data on small stores and one
will grant access to data on the larger stores but this will only be made avail-
able to paying customers.

Let’s take a quick look at the stores we have in Washington and Oregon so
that later on it will be easy to see whether our solution is working:

141

Member properties and dimension security

There is only one store per city, so there are two stores in Oregon and seven
in Washington.

For our purposes, we define the size of a store by its square footage, so
stores which are less than 21,000 sq ft are considered to be small. The square
footage of each store is held in the Store Sqft member property of Store
Name.

OK, as always, we need a game plan for solving this problem. We need to
find all stores, find the square footage of each and filter out those stores
with a square footage of less than 21,000 sq ft.

As before, we use the Members function to find all stores:

[Store].[Store Name].Members

and then we want to query each member to find the value in its Store Sqft
property using the Properties function:

Store.CurrentMember.Properties("Store Sqft")

The Properties function, you’ll recall, always returns a string which isn’t
good news here. We want to be able to compare the square footage values
for each store in order to find the small ones. To do this, we need to convert
the strings to numerical values and to perform the conversion we can use
the VBA function called Val.

� “Wait a minute,” you cry. “Isn’t this a book about MDX? How did Visual Basic for
Applications sneak in?” MDX has many useful tricks up its sleeve and one is its
ability to use a VBA function just as if it was an MDX function. In fact, Analysis
Services can automatically make use of many VBA and Excel functions so even
though they’re not part of Analysis Services you can use them seamlessly in your
MDX code.

The Val function returns the numbers contained in a string as a numeric
value. The string to be converted is wrapped up in braces and placed after
the function: in our case, the string is returned by the Properties function
so we’d write:

Val(Store.CurrentMember.Properties("Store Sqft"))

The code to find all members at the Store Name level goes in front:

Store.[Store Name].Members,
Val(Store.CurrentMember.Properties("Store Sqft"))

142

Member properties and dimension security

�

and now we’re ready to add a Filter function to give us only those stores
where the square footage is less than 21,000, like this:

Filter(Store.[Store Name].Members,
Val(Store.CurrentMember.Properties("Store Sqft")) < 21000)

and that’s the expression complete.

So now we can identify the stores about which we will supply free data and
those for which we want to charge. That’s half the solution, but we still
need to be able to restrict access to data on that basis, so we’ll put our
expression on hold for the moment.

In order to implement this, we need to delve into the security settings and
create a role. This database contains only one cube so it doesn’t really
matter if we create a database or cube role, so we’ll choose to create a cube
role. Analysis Manager contains yet another editor for managing security
and to reach it, right click on the cube and select Manage Roles.

143

Member properties and dimension security

The Cube Role Manager shows all roles that are associated with the cube.

You can see a role called All Users and its membership is Everyone. This
means that absolutely everyone coming in from the far corners of the
internet can work under this role, so this is the role in which we want to
introduce the new restriction on access to the store dimension.

With the All Users role highlighted, click the Edit button and then the
Dimensions tab. Click in the cell that shows the Rule in place for the Store
dimension (at present it’s Unrestricted) and then pop down the list of
options. Choose Custom.

144

Member properties and dimension security

Now either click on the ellipsis button that will have appeared under
Custom Settings (it only appears when Custom is selected under Rule)

or double click anywhere in the Store/Custom Settings cell and the Custom
Dimension Security dialog opens up: click on the Advanced tab.

Faced with this screen, now seems like a good time for some more informa-
tion about how dimension security can be set up. There are basically two
approaches to defining security depending on whether you are optimistic
or pessimistic. The pessimistic approach is to deny access to everything in
the dimension except to a specific set of members, referred to as allowed
members. The optimistic approach is to grant access to everything except
for that set of members, now known as denied members.

145

Member properties and dimension security

One important difference between these approaches is the effect they have
during an incremental update to a dimension.

� Analysis Services permits the incremental updating of dimensions when the cube is
processed. This can be very useful when rows have been added to any of the cube’s
dimension tables since the cube was last processed.

If you take the optimistic view and allow everything except for specific
members, when you run an incremental update of the dimension, it will be
possible for new members to be added. Should a new store be opened, for
instance, it can be added to the dimension during the update. If, on the
other hand, you react pessimistically and deny everything except for
specific members, it will not be possible to add new members during an
incremental update.

This time we’ll do the pessimistic thing and deny access to everything ex-
cept the allowed members. Start by entering a description in the space at
the top of the dialog box for the customized permission, something along
the lines of Small Stores. Now click on the ellipsis button to the right of the
Allowed Members: box to open the MDX Builder and enter the expression
we built a short while ago – here it is again:

Filter(Store.[Store Name].Members,
Val(Store.CurrentMember.Properties("Store Sqft")) < 21000)

146

Member properties and dimension security

�

and click OK to paste it into the Allowed Members box. Click OK again and
the new custom setting is now displayed in the Cube Role editor.

� If you write expressions in a text editor it’s worth noting that the MDX editor is
very picky about its inverted commas. If you write your MDX in Microsoft Word,
for example, and use the curly double open and close inverted commas, and copy and
paste the expression into the editor, you’ll find it won’t work. The commas are re-
placed by blocks and a syntax error is reported. Using the straight double inverted
commas from the Insert, Symbol utility in Word cures this glitch, or you can simply
edit the expression once it has been pasted into the expression editor.

Click OK again, and back in the Cube Role Manager, the Store dimension
is now shown in the list of restricted dimensions.

We seem to have done it, but we have a potential problem with testing the
newly edited role. It’s highly likely that you are an administrator with all
the rights and privileges of data access entailed by that position: you will be
able to see everything everywhere. So do you have to log off, create a new
user and log on again in order to adopt a different persona, one where
you’re an underprivileged user rather than an all-powerful administrator?
In situations like this in the past, that was indeed the only solution, and it
was as tedious and as time-consuming as you would expect.

147

Member properties and dimension security

�

Happily, Analysis Manager has a new feature which enables you to test
roles without all the hassle. Choose a role and it will mimic the security
permissions for that role so that you can see and do exactly what a user allo-
cated to that role can see and do.

One of the buttons along the bottom of the Cube Role Manager screen is
one called Test Role (it’s shown in the screen shot above). Highlight the
role you want to test, click the button and there you are in the Cube
Browser, inspecting data as a member of the All Users role.

Let’s check out whether our MDX expression is working by dragging the
Store dimension onto the grid and expanding the list of stores in Wash-
ington and Oregon.

Instead of seven towns in Washington, only two are now visible: Yakima
and Walla Walla. This seems reasonable as they are smaller towns well
away from the more populous west coast. Oregon is down to one store
instead of two. But the one that we can see is in Portland: though not the
state capital, Portland is still a large city and it’s surprising that this store is
being filtered out because it is small. Perhaps our expression isn’t working
as we’d planned.

Close the Cube Browser and the Cube Role Manager. This gets you back to
Analysis Manager and it also means that you will have your administrator
rights restored to you.

148

Member properties and dimension security

Edit the cube, browse the data and expand the information about the Port-
land store until you can see Store 11 member. Right click on it, select
Member Properties and these are displayed.

A-ha! So the Portland store is a borderline case with 20,319 square feet of
space which puts it a mere 681 square feet short of our 21,000 cut-off point.

Everything seems to be OK, but let’s look at Walla Walla’s square footage
(Store 22) just to make sure.

Oh. So that’s why Walla Walla shows up – there is no value for the store
area. Our sample data isn’t as comprehensive as perhaps it should be. In
fact, there is no value for Yakima or any of the other stores we can see in the
restricted set.

149

Member properties and dimension security

� It’s easy to develop complete faith in the answers that analyses present to you, but
these answers can only ever reflect the accuracy of the data in the database and the
accuracy of the manipulations. Once data becomes complex, anomalies like these are
almost bound to occur and it can be useful to go back to the original data now and
again just to check that you and your expressions aren’t making any unsupportable
assumptions.

Summary

In solving this business problem, we’ve taken several further steps up the
learning curve which is, hopefully, beginning to flatten out. We’ve looked
at member properties and seen how they can be queried with the Prop-
erties function. Using member properties as a filter criteria can be a useful
way of looking at your data, allowing you to segment the data depending
on the property.

We’ve demonstrated the use of external VBA functions: these and a range
of Excel functions can be accessed completely seamlessly within MDX. You
don’t have to think twice about using them, you just do it.

Lastly we’ve looked briefly at dimension security, showing how MDX can
be used to define extremely dynamic dimension security and how member
properties can be used as criteria for defining that dimension security.

Function Requires Returns

Properties Member name String

Val (VBA function) String Value

150

Member properties and dimension security

�

Chapter 12

Distinct Count

Resources:
Starting database – FoodMart2000_MDX3
Cube – Sales
Completed sample database – FoodMart2000_EndChap14

Many times in business situations we want to know exactly how many
somethings we have; the somethings may be customers, for instance, or
products. It’s a straightforward enough question to a human being and
you might expect the answer to be simply found too, but in the past it has
proved surprisingly troublesome. All that’s behind us now as MDX has a
splendidly useful Distinct Count function.

It’s time for another scenario: you’re managing a cube for a large computer
retailing business and the sales manager has just asked “How many
customers do I have?” Below is a simple table showing a Products dimen-
sion grouped by hardware and software, with two measures, the sales and
the number of customers.

Sales No of customers

All products $80,000 200

Hardware $33,000 80

Computers $20,000 70

Monitors $8,000 60

Printers $5,000 30

Software $47,000 150

Home $15,000 100

Business $25,000 100

Games $7,000 80

151

We sum all values for sales so the total for all products is $80,000. Fine, but
what we really want to know is how many customers we have, that is, how
many customers contributed to the sales total. So we look at the number of
customers shown against all products and see that we have 200 customers.
What does that mean exactly? Look at the numbers of customers buying
the three categories of software and we have eighty customers buying
games, a hundred buying business software and a hundred buying home
software. However, the total number of customers against software sales is
150, not 280. Isn’t this an anomaly? The correct answer is ‘no’ because the
same customer may buy games and home applications, and possibly busi-
ness applications as well. So this set of figures is correct; the problem is that
if we build a cube from the underlying data, unless we tell it to behave
differently, it will simply sum the customers in the same way as the Sales
values.

In fact we often wish to avoid counting any customer more than once
because doing so produces all sorts of misleading values, not only of the
number of customers but also values such as the average amount spent per
customer, the number of brochures to print for a customer mail-shot and
any possible correlations between purchases by a single customer that
could be exploited to make additional sales. The Distinct Count function
allows you to do all of this, and more, in your cube.

Distinct Count is an unusual function because it can only be used by a
measure. It’s used in measures to produce an aggregated value and it does
this by aggregating all instances of the same entity in order to ascertain the
number of unique values. Despite this atypical feature, Distinct Count is
very simple to use.

152

Distinct Count

The cube we’ll use is the Sales cube from the FoodMart2000_MDX3 database.
We want to build a measure that will tell us how many individual
customers we have, so open the Cube Editor and create a new measure.
From the Schema, click on the column in the fact table that identifies the
entities you want to count, drag it over to the Measures folder and drop it.
We want the customer_id column so drag it across and a new measure of
the same name appears. (Alternatively you could right click on Measures in
the Tree view and select New Measure... and select customer_id as the
source column and click OK).

In the Basic properties tab, change the Name to reflect the new measure’s
role in life – Customer Count sounds good – and then double click on the
cell in the properties list that show the current Aggregate Function to be
Sum. From the list, choose Distinct Count.

153

Distinct Count

� The complete list of Aggregate Functions supported in MDX is Sum, Count, Max,
Min and Distinct Count: as the names suggest, all of these functions perform an
aggregation of some sort.

Aggregate function Returned value

Sum The sum of the input values

Min The lowest of the input values

Max The highest of the input values

Count The number of input values

Distinct Count The number of unique input values

If you move to the Data view, you’ll see a message that says you’ll only be
able to see sample data until the cube is processed. Save the cube, click
Tools and select Process to process the cube.

Processing the sample cube will take longer because data from the rela-
tional source is used to calculate the distinct count as an additional and
separate step in the processing run. The good news is that you only pay
that price once and with the cube processed, querying the Customer Count
measure will be very fast.

Here we can see the customer count for all customers and for a range of
customer subsets. The new measure is also shown with its basic properties.

154

Distinct Count

�

This brief chapter will, we hope, bring joy to anyone who has struggled
with distinct counting in the past.

155

Distinct Count

Chapter 13

Parent–Child dimensions

Resources:
Starting database – FoodMart2000_MDX3
Cube – Budget
Completed sample database – FoodMart2000_EndChap14

In Chapter 14 we will be looking at a variety of features that are best dem-
onstrated using a Parent–Child dimension. The good news is that these di-
mensions are easy to understand, the bad is that Chapter 14 makes no
sense at all unless you are familiar with them. Of course, in your OLAP
travels you may already have become intimately acquainted with this type
of dimension, in which case please feel free to skip this and dive immedi-
ately into Chapter 14.

Since you’re still reading...

Parent–Child dimensions are best described by contrasting them with ‘nor-
mal’ dimensions. A typical dimension table for a star schema might look
something like this:

Day_id Day Month Quarter Year

367 01/01/1997 January Q1 1997

368 02/01/1997 January Q1 1997

...

397 31/01/1997 January Q1 1997

398 01/02/1997 February Q1 1997

...

456 31/03/1997 March Q1 1997

457 01/04/1997 April Q2 1997

458 02/04/1997 April Q2 1997

and so on

156

Here we are storing information about each day and we are also storing
hierarchical information about how days build up into months, quarters
and years. So we have four levels and multiple members at each level.
However, note that we aren’t storing information specifically about any of
the members apart from the days. There is one row in the table for each
specified day, but no rows for any months, quarters etc. Instead, each of the
higher levels (Year, Quarter and Month) is represented by a column in the
table. In the Month column, for example, we store the name of the member
at the month level (e.g. February) to which any given day belongs.

Note that none of the month members (such as February) have a unique
identifier in this dimension table. The implication of this is that February
can’t be referenced by an entry in the fact table, so the cube itself can only
ever contain data about February that is derived from the ‘daily’ data. This,
of course, isn’t normally a problem because all the data for the higher levels
is logically derivable from the base data by aggregation.

Now, suppose that you want to store information about another hierarchy,
one that looks like this:

The fact table holds financial transactions and each transaction is one of
eight types as defined by the leaf members – Cost of Goods Sold, Gross
Sales and so on down to Marketing. The first four are aggregated up to
produce Net Sales and the last four to give Total Expense. In turn these
two are aggregated to give Net Income.

157

Parent–Child dimensions

No problem, we simply use a dimension table like this.

Account_id Account_description Level 2 Level 1 Account_type

3200 Cost of Goods Sold Net Sales Net Income Income

3100 Gross Sales Net Sales Net Income Income

3500 Return Net Sales Net Income Expense

3300 Tax Refunds Net Sales Net Income Income

4100 General &
Administration

Total
Expense

Net Income Expense

4200 Information Systems Total
Expense

Net Income Expense

4400 Lease Total
Expense

Net Income Expense

4300 Marketing Total
Expense

Net Income Expense

We are using two columns for the hierarchy information, Level 1 and
Level 2, and another is used for storing additional information that the
business users have specified – Account_type.

Now, suppose the hierarchy becomes more complex.

A transaction in the fact table can now be classified as one of ten types
(Assets and Liabilities are now included) and both of these contribute
directly to All Account. But our original design of the dimension table only
allows facts in the fact table to point to members at the lowest level.

158

Parent–Child dimensions

Well, this happens to be an unbalanced hierarchy, which means that not
every account type is the same number of levels down from All level.
Hmmm. Well, we could try to represent this information in a standard
dimension table like this:

Account_id Account_description Level 3 Level 2 Level 1 Account_type

1000 Assets All Asset

2000 Liabilities All Liability

5000 Net Income All Income

3000 Net Sales Net
Income

All Income

3200 Cost of Goods Sold Net Sales Net
Income

All Income

3100 Gross Sales Net Sales Net
Income

All Income

3500 Return Net Sales Net
Income

All Expense

3300 Tax Refunds Net Sales Net
Income

All Income

4000 Total Expense Net
Income

All Expense

4100 General &
Administration

Total
Expense

Net
Income

All Expense

4200 Information Systems Total
Expense

Net
Income

All Expense

4400 Lease Total
Expense

Net
Income

All Expense

4300 Marketing Total
Expense

Net
Income

All Expense

159

Parent–Child dimensions

or we could try it like this:

Account_id Account_description Parent GrandParent GGrandParent Account_
type

1000 Assets All Asset

2000 Liabilities All Liability

5000 Net Income All Income

3000 Net Sales Net
Income

All Income

3200 Cost of Goods Sold Net
Sales

Net Income All Income

3100 Gross Sales Net
Sales

Net Income All Income

3500 Return Net
Sales

Net Income All Expense

3300 Tax Refunds Net
Sales

Net Income All Income

4000 Total Expense Net
Income

All Expense

4100 General &
Administration

Total
Expense

Net Income All Expense

4200 Information Systems Total
Expense

Net Income All Expense

4400 Lease Total
Expense

Net Income All Expense

4300 Marketing Total
Expense

Net Income All Expense

Now each one has a unique identifier and so each can be referenced by the
fact table. However, this will become rather messy if (as often happens in
reality) we end up with a large number of members at many different
levels. Can we be a little more imaginative about how we structure this
table? Answer: “No, we are going to just have to put up with this.”

160

Parent–Child dimensions

OK, just kidding. We can swap to a model where we have a row for every
member in the hierarchy, irrespective of the level at which they occur. We
can also dump all of the explicit level columns from the table; in their place
we put a single column which points to the parent of the member – like
this:

Account_id Account_parent Account_description Account_type

1000 Assets Asset

2000 Liabilities Liability

3000 5000 Net Sales Income

3100 3000 Gross Sales Income

3200 3000 Cost of Goods Sold Income

3300 3000 Tax Refunds Income

3500 3000 Return Expense

4000 5000 Total Expense Expense

4100 4000 General & Administration Expense

4200 4000 Information Systems Expense

4300 4000 Marketing Expense

4400 4000 Lease Expense

5000 Net Income Income

� Account_parent is a foreign key to the primary key – Account_id – and uses a
self-join.

If you are prepared to take the time to follow all of the joins, you should
discover that you can create the hierarchy above from this table. This is
called a Parent–Child dimension because the table stores information
about both parents and children in the same table. There is one row in the
table for each and every member in the hierarchy. That row also contains a
pointer to the parent of the member. It turns out that this way of describing
a dimension happens to have other major advantages. As you will have
guessed, these advantages are discussed as part of the next chapter.

161

Parent–Child dimensions

�

Chapter 14

Advanced data modeling –
Custom Order, Custom
Rollup, Custom Members

Resources:
Starting database – FoodMart2000_MDX3
Cube – Budget
Completed sample database – FoodMart2000_EndChap14
MDX samples – CHAP14.TXT

The topics covered in this and the next chapter all come under the general
heading of issues which typically need to be addressed in a financial appli-
cation, so that is how we’ve illustrated them. However, once again, we
want to stress that this is simply a convenient way of illustrating them – the
topics can be applied in a host of different applications.

Usually we try to structure the data in a cube to reflect the way it is used in
the real world. For cube users to make the most effective use of the data,
they need to see ‘their’ data in ways that make sense to them so that they
can analyze and manipulate it with confidence and without having to
learn any special cubist approaches.

162

For this we’ll use the Budget cube from FoodMart2000_MDX3 and in this cube
we have four dimensions: Store and Time are just as before, and there is a
Category dimension that holds values such as actual, budget, budget vari-
ance, forecast and so on. The fourth dimension is Account and this will hold
the data such as sales, costs, maybe expenses – all the financial accounting
stuff that’s needed to present the data in the required way. Let’s look at it
with the Cube Editor:

The good news is that it’s undeniably a cube, but the bad news is that it’s
not what’s required by the users at all. Firstly, there’s the question of
ordering in the Category dimension. The category descriptions need to be
displayed in an order that makes sense to a business user, rather than in the
alphabetical order they’re shown at present. So values for actuals should be
followed by those for budget, then by any adjustments and finally by the
forecast.

163

Advanced data modeling

The second problem is rather more serious. The company’s net income for
1997 is just over $189,000 which looks great (1998 looks even better!) – until
we see how that total is being derived.

It looks suspiciously like the company’s expenses of $166,000-odd are being
added to the net sales figure to derive the net income. In other words, the
figures in our current cube are a gross misrepresentation of the company’s
performance. Back in Chapter 7 we talked about the default behavior of a
cube which is to sum all values. This is again the crux of our problem: the
values are being added and that is giving us the wrong answers.

Finally, one of the main reasons for building the cube was to do some
budgeting, but there are no budget figures in the cube to support this. So,
getting some budget figures into the cube is also a high priority. OK, let’s
get fixing these three problems.

Problem 1: Custom Order – ordering of
members in a hierarchy

The members in a dimension are sorted by default into alphabetical order.
While finding the city you want is easy in an alphabetical list, it’s not the
ideal way of presenting the categories in our Category dimension. What
we need here is some custom sorting of the members.

164

Advanced data modeling

Levels within a dimension have an advanced property called Order By that
allows you, as the name suggests, to order the members within that level.
We can see this using the dimension editor:

In this case the members are being ordered by the Name. OK, no problem, all
we need to do is to find out to what ‘Name’ in this context refers. The answer
lies in the Basic properties.

� The first property in the list is Name and it is tempting to think that ‘Order By –
Name’ is referring to this – tempting, but incorrect. This is simply the name of the
level itself and it is logically unreasonable to try and order the members of a level by
the name of the level.

The answer is that ‘Order By – Name’ is pointing to the property ‘Member
Name Column’.

165

Advanced data modeling

�

OK, that has answered one question but it may, depending on how much
you know about cube design, have simply introduced another – “So what’s
the difference between Member Key Column and Member Name
Column?” We’ll digress briefly from custom ordering to cover this differ-
ence for those who haven’t come across it so far.

Member Key Column and Member Name Column

Both the Member Key Column and Member Name Column are pointing to
columns in the dimension table (back in the source database which is an
Access database called FoodMart 2000 Before Demos.mdb). Here is some
sample data from that table:

and here is some from the fact table:

166

Advanced data modeling

In the Cube Editor:

we can see that the member key column is pointing to category_id in the
Category table which is the primary key of that table. So category.cate-
gory_id is the column at the ‘one’ end of a one-to-many join. In other
words the data in this column uniquely identifies the rows in the dimen-
sion table and hence uniquely identifies the members of the dimension.

The member name column points to category_description, which holds
the actual name by which a dimension’s members are known and these are
the names that are shown in the data pane.

An important point that comes out of all this is that these member names
do not have to be unique for each member of the dimension (in this case
they are, but the structure of the table offers no guarantees on the point).

167

Advanced data modeling

The member keys, on the other hand, are held in a column that is the
primary key. By definition, they have to be unique, are unique and always
will be unique. No question.

� But please don’t think that we are trying to stress that this difference is particularly
important or anything.

Of course, all of this is under your control and you don’t have to set it up as
shown here. For example, depending upon the level, it is relatively
common to use the same column for both the member keys and the
member names (see the section called ‘More about &’ at the end of this
chapter).

Creating a custom order

OK, back in Advanced Properties, we now know what Name means in the
Order By property. It means that the members are being sorted alphabeti-
cally on the data found in the Member Name column which turns out to be
the column called category_description. So, if we change the Order By
property to Key:

the order would change to actuals, adjustments, budget and forecast, but
in practice we won’t do that because that isn’t what we want either. What
we do want is to be able to sort these into our own custom order.

Tweaking the order manually is a possibility and it’s acceptable for a
dimension with four members; however, a dimension can have tens,
hundreds or even thousands of members. Dealing with each one manually
would be very time consuming so there is another way to control the order
and that’s to use a member property to define a custom order. So we need
to create a new member property and then use that new property to order
the members.

168

Advanced data modeling

�

Firstly you need a column in the dimension table which will define the
ordering for each member and, being thoughtful individuals, we’ve
already provided such a column for experimentation. If you look at the
schema view of the Category dimension table, you’ll see a column called
‘Custom order’:

and this is the data source table (held in the Access database called
FoodMart 2000 Before Demos.mdb) showing the same column:

One benefit of having the column in the dimension table is that it can be
populated automatically from, for instance, a stored procedure. Another
benefit is that it keeps everything about the dimension in the same place
for easy maintenance.

169

Advanced data modeling

The second step is to set up a new member property based on data from
this Custom order column. Just as we did in Chapter 11, right click on the
Member Property folder (it’s beneath the Category Description in the hier-
archy view), select New Member Property, click on the Custom Order
column:

and then on OK. The property name will have transmogrified itself into
Customorder, so edit it to be Custom Order.

170

Advanced data modeling

Now look at the advanced properties of Category Description again and,
when you click to see the options available for the Order By property,
you’ll see three of them:

Select the new member property, Custom Order, save and reprocess the
dimension. Open the Cube Editor to look at the results – you’ll be asked to
reprocess the cube first – and check out the order of the categories.

171

Advanced data modeling

Here the Category Descriptions are shown in exactly the correct order with
the values for actuals followed by those for budget, then by adjustments
and finally by the forecast. Great, that problem’s sorted.

Practical summary

While telling you how to create a custom order we have also tried to
explain what we were doing as we went along, with the result that it all
seems to have taken a long time to accomplish the work. And this may give
the impression that these improvements to the cube are difficult and time
consuming to implement whereas, in fact, once you are used to doing
them, they are simple. So, here is a practical summary of what we have just
achieved to show that the work involved is minimal.

Problem 1: Custom Order – ordering of members in a
hierarchy

The members in a dimension are sorted by default into alphabetical order.
We want to sort in a custom order.

1 Create a column (Custom Order) in the dimension table (Category)
which will define the ordering for each member. (This is done for you.)

2 Add the appropriate sort-order information as data in this column. (This
is done for you.)

3 Set up a new member property based on data from this Custom Order
column. To do this: edit the Category dimension using the Dimension
Editor, right click on the Member Property folder (it’s beneath the Cate-
gory Description in the hierarchy view), select New Member Property,
click on the Custom Order column and click OK.

4 Now look at the advanced properties of Category Description and find
the Order By property. When you click to see the options available for
the Order By property, you’ll see three of them including Custom Or-
der. Select it. Save and reprocess the dimension.

5 Reprocess the cube.

172

Advanced data modeling

Problem 2: Custom Rollup – when the cube’s
default behavior doesn’t do the right job

The problem is that our expenses have been rolled up and added to sales
and while this may give us a great value for net income, it’s simply wrong.

� Very wrong. In practice people like accountants can get surprisingly tense about
this kind of error, and you end up getting aggravation about your aggregations.

This is another place where we need to control the order, not of the way
things are displayed this time, but the order in which the values are rolled
up to give aggregated values and what exactly each step in the rolling up
operation should be. In other words, we need to define a custom rollup.

The default behavior, as you know, is to aggregate from the lowest level,
summing everything up to produce aggregated totals. In this case
expenses are being added to net sales to give an erroneous profit figure. We
want to sum to get a total for expenses and do the same to find the net sales,
but then we want to subtract the expenses total from the net sales total in
order to find out the true profit figure. At a finer grain of detail, not all sales
are credits – returns and cost of goods sold are actually expenses – so we
want to subtract these from the net sales total too.

The aggregation of members is controlled by the tongue-twisting Unary
operator (try that when sales of alcoholic beverages have increased). These
can be applied to members in our Account dimension to force them to do
what we want. There are five unary operators: +, -, *, / and ~. The first four
behave as you’d expect and the tilde means that you do not want the data
to be rolled up or included in any total.

The tilde is useful for such things as assets and liabilities which don’t neces-
sarily need to be rolled up, and it’s also handy if you want to do a ‘what if’
simulation. You might want to include a hypothetical value as well as a
true value in the cube. Then you could assign a tilde to the true value to
leave it out of the calculations and roll up the hypothetical value into your
‘what if’ analysis.

There are two further pieces of information that you’ll need when working
with unary operators. The first is that they have what’s called a solve order
– simply the order in which the arithmetical steps are carried out – and that
is taken directly from the ordering of members. Basically, the process starts
at the top of the dimension and works downwards.

173

Advanced data modeling

�

� It is possible to change the solve order: you’d create a new member property, set its
Type property to Sequence and assign sequence numbers corresponding to the new
solve order in its Source Column property. It’s a very similar process to the one
we’ve just illustrated for defining a sort order.

Secondly, unary operators can be stored in a separate column in the source
database.

OK, so we want to assign unary operators to the members in the Account
dimension, so start by browsing the members in that dimension with the
Dimension Editor:

The members all look perfectly normal with no visual indication that
there’s anything special about them. They’ll just sum up as usual.

174

Advanced data modeling

�

The unary operator to be used for each member is stored in a column in the
source database: the approach is very similar to that used for storing the
custom order of members. It’s a particularly efficient process, especially
when dealing with large numbers of members. Again, we’ve already put a
column in our Account dimension table to hold the details of our custom
rollup; it’s called account_rollup and this is it in the schema view:

(The join, in fact a self-join, between account_id and account_parent, indi-
cates that this is a Parent–Child dimension, as described in Chapter 13.)

This is the same column in the data source table:

The unary operator for each member is in place. Figures for expenses and
cost of goods sold, for example, are assigned minuses and those for net
sales and net income are, among others, assigned pluses.

175

Advanced data modeling

The sharp-eyed reader will have spotted that there’s an entry under
account_description for Marketing which has no operator in the
account_rollup column. We’ll see the effect this has in a moment....

With the operators in place, we need to tell the system to make use of them.
With the Account Id level highlighted in the hierarchy, check out the last
advanced property in the list. It’s Unary Operators and is presently set to
False (the default ‘sum everything’ behavior). Click the ellipsis button and
the Define Unary Operator Column dialog opens:

Click to enable unary operators and, in this case, click to use an existing
column, selecting account_rollup from the pop down list:

176

Advanced data modeling

Click OK and the property is set to True. Save the change to the dimension
and look at the data view of the members:

Each member now has an operator shown alongside it. Look at the last
member, Marketing. Despite the lack of an operator in the account_rollup
column, Marketing has gained a plus sign in the view above. If a blank
value is found in the custom rollup column, the default behavior takes over
again and the member is presumed to have a plus, or summing, unary
operator.

Now look at the changes from the Cube Editor, first processing the cube.
Suddenly things are looking pretty grim for the company:

With total expenses of $166,000-odd and net sales of just under $23,000,
we’re seeing a net income total of minus $143,000 – a horrible number but
unfortunately correct.

177

Advanced data modeling

Practical summary

Problem 2: Custom Rollup – when the cube’s default
behavior doesn’t do the right job

Our expenses have been rolled up and added to sales, which is incorrect.

1 Create a new column (account_rollup) in the Account dimension table
to hold the details of the custom rollup. (This is done for you.)

2 Add the appropriate unary operators as data in this column. (This is done
for you.)

3 Edit the Account dimension. With the Account Id level highlighted in
the hierarchy, and Advanced Properties selected, click the ellipsis button
next to the Unary Operators property and, from the Define Unary Oper-
ator Column dialog, select the column account_rollup. Save and repro-
cess the dimension.

4 Reprocess the cube.

Problem 3: Custom Members – filling in
missing information

Our third problem is that there is no budget information whatsoever in our
cube. There is nothing in the fact table because it simply records facts such
as sales, expenses and so on as generated by transactions in the operational
database. Budget information is not generated by transactions in the same
way. The upshot is that we have no budget data, and this is not helpful
from a business perspective.

What can we do to address this? We can consider it under a general
heading of ‘calculations everywhere’. OLAP applications, and especially
financial applications, will typically involve many, many calculations.
They’re used for forecasting, data modeling, allocations and so on – it’s a
very calculation-intensive environment. The solution to this widespread
need for calculations is to allow the definition of a calculation for any
member in the cube. In this case we want to define a calculation to produce
our budget figures.

� We’ve just mentioned ‘calculations’ and ‘members’ above so you might put them to-
gether and think about calculated members. There are, however, good reasons why
we are not going to use calculated members. Firstly, a calculated member cannot
have any levels or members below it and we may need subsidiary members for our

178

Advanced data modeling

budget data. Secondly, calculated members cannot have member properties and we
saw in Chapter 11 how useful these can be for performing analyses. So, having con-
sidered all the angles, calculated members are not appropriate for this particular job.

We need something different and it’s an advanced property called Custom
Members. Custom Members allow you to define the value of any member
with an MDX expression and, once again, these expressions are stored in a
separate column in the source database.

We’ll use a very simple formula for our budget calculations because we are
trying to show you how to set up a custom member rather than trying to do
any real forecasting. So in our case the budget will be 110% of the previous
year’s actuals. Use the Dimension Editor to edit the Category dimension
and with the Category Description highlighted in the Tree view, inspect
the Advanced property called Custom Members. At present it’s set to False,
but clicking the ellipsis button opens the Define Custom Member Column.
Checking the Enable Custom Members box lets you choose between a new
or an existing column:

179

Advanced data modeling

�

Being our usual helpful selves we’ve already defined a column in the data
source called ‘Custom formula’:

The formula takes the actuals value from the previous year and multiplies
it by 1.1, giving our budget of 110% of last year’s actuals.

(Category.&[ACTUAL],ParallelPeriod(Year,1,
Time.CurrentMember))*1.1

� The & in the formula indicates that the member key is being used to identify the
member. In this case, as we have said, it is the category_id field that holds the
member keys; see first row of the table above. There is more about this at the end of
the chapter.

Click OK and flip to the data tab: in the list of Dimension Members you’ll
see that Current Year’s Budget now has a little curly ‘f’ in front of it to show
that there is a formula associated with it. With that member highlighted, in
the Custom Member Formula pane (bottom right) you’ll see the formula
itself.

180

Advanced data modeling

�

Save the changes to the dimension and process it. Now close the Dimen-
sion Editor and do a full reprocess on the cube. Finally browse the Budget
cube with the Cube Editor. Our budget-calculating formula has worked
and there’s now a value – but that’s the end of the good news:

In 1998 the predicted losses were $158K and the actuals were nearer $870K.

� Looks like the dot com collapse came early for our FoodMart company. The fact that
it is an entirely fictitious company becomes more and more of a comfort.

And, just in case you were wondering, all of these changes should be
visible in your chosen front-end tool.

181

Advanced data modeling

�

Practical summary

Problem 3: Custom Members – filling in missing
information

There is no budget information in our cube. There is nothing in the fact ta-
ble because it simply records facts such as sales, expenses and so on as gen-
erated by transactions in the operational database. Budget information is
not generated by transactions in the same way. We are going to create a
Custom Member in the Category dimension. Custom Members allow you
define the value of any members with an MDX expression and, once again,
these expressions are stored in a separate column in the source database.

1 Create a new column (Custom Formula) in the Category dimension ta-
ble to hold the details of the customized calculation. (This is done for you.)

2 Add the appropriate formula as data in this column. (This is done for you.)
3 Use the Dimension Editor to edit the Category dimension and with the

Category Description highlighted in the Tree view, click the ellipsis but-
ton to the right of Custom Members. In the Define Custom Member Col-
umn dialog that opens, check the Enable Custom Members, Use an
existing column and choose Custom Formula.

4 Save the changes and reprocess the dimension. Then reprocess the cube.

More about &

We said above that when you see an & (ampersand) in an MDX formula it
indicates that the member key (rather than the member name) is being
used to identify the member.

182

Advanced data modeling

As we said earlier, the column in which member keys are found is one of
the basic properties of a dimension, and for the Category dimension, the
category_id column holds the member keys and the category_descrip-
tion column holds the member names.

The ampersand (&) character is used in MDX to differentiate a member key
from a member name, as you saw in the budget-generating expression
used above:

(Category.&[ACTUAL],ParallelPeriod
(Year,1,Time.CurrentMember))*1.1

In this case, the member key [ACTUAL] is used.

Referencing the member key ensures proper member identification in
changing dimensions and in dimensions with non-unique member names.

� A changing dimension is one with members that may move within the hierarchy.
For instance, sales people move between stores or regions and a changing dimension
lets you allocate the sales made by Employee X when working in Portland to the
Portland store and, following a move to Spokane, to allocate sales to the Spokane
store.

183

Advanced data modeling

�

It turns out that the ampersand character can be used to indicate a member
key reference in any MDX expression and often appears in machine-gener-
ated MDX. For example, if you build a query using ProClarity’s GUI and
then have a look at the MDX, you’ll often find that it is using member key
references rather than member name references, for example:

SELECT
{ [Time].&[1997] } ON COLUMNS ,
{ [Store].[Store State].&[CA], [Store].[Store State].&[OR],
[Store].[Store State].&[WA] } ON ROWS
FROM [Budget]
WHERE ([Measures].[Amount])

In practice you’ll often find that the Member Key Column and the Member
Name Column are pointing to the same column in the dimension table and
hence to the same values.

184

Advanced data modeling

In these cases you can safely remove the ampersands, secure in the knowl-
edge that the MDX is still functional.

SELECT
{ [Time].[1997] } ON COLUMNS ,
{ [Store].[Store State].[CA], [Store].[Store State].[OR],
[Store].[Store State].[WA] } ON ROWS
FROM [Budget]
WHERE ([Measures].[Amount])

Summary

Well, the company may be going down fast but our MDX skills are on the
up and up which should guarantee us employment, even if with another
company.

1 We’ve looked at how you can control the order in which members ap-
pear on screen. This lets you present information to your users in a much
more readable way.

2 Then we looked at how you can control the way in which child members
are rolled up to form parent members. This ensures that you don’t add,
for example, Gross Sales and Returns to give Net Sales.

3 Finally we’ve looked at how you can create custom members which can
be used, for example, for forecasting financial figures.

However, our budget cube still has some challenges remaining; these are
dealt with in the next chapter.

185

Advanced data modeling

Chapter 15

Further advanced data
modeling techniques

Resources:
Starting database – either FoodMart2000_MDX3 if you completed the ex-
amples from the last chapter or FoodMart2000_EndChap14
Cube – Budget
Completed sample database – FoodMart2000_EndChap15
MDX samples – CHAP15.TXT

Write-enabled dimensions and working with
data in other cubes

We’re still using the Budget cube and in the last chapter we successfully
dealt with three problems using Custom Order, Custom Rollup and
Custom Members. However, this cube continues to have some problems
and, by a remarkable stroke of good fortune, resolving those problems
enables us to introduce you to some further MDX-related topics.

Fourthly (if you’re counting from the top of the last chapter) when the cube
was defined, an important, not to say essential, category of expense was
omitted: salary.

Number five is that we have members called Cost of Goods Sold and
Return in our Accountdimension but there is no data for either in the cube.

Finally, number six, we’re a little short of data – but more about this later.

We’ll start with the missing salary member.

186

Problem 4: Write-enabled dimensions –
allowing users to add a member to a
dimension

Imagine that we have created the Budget cube and given the business users
access to it. As always happens, as soon as they start to use it, they notice
things that they forgot to tell us. The most important turns out to be one of
the key expenses – salary.

This is quite a dilemma from the DBA’s point of view. It would be possible
to let that user edit the dimension table to add a new row for the salary
data. This is not, however, a solution that is likely to win favor with a
conscientious DBA who must retain an understanding of the cube struc-
ture in order to keep it running efficiently. An alternative is for the DBA to
make the changes every time something gets forgotten, an equally unap-
pealing option for the busy administrator. Is there any other solution?

Yes. (Inevitably.) The solution allows you (and specified users) to maintain
the dimension and to modify its structure from within Analysis Manager.
In many ways, it’s a means of letting people work efficiently within their
own fields of expertise. The DBA has one field of expertise and the business
user has another so it makes sense to allow them to work together, the DBA
taking care of major data issues and the business user adding business
logic. Why particular figures are important and how they should be manip-
ulated is not stuff a techie DBA is likely to find stimulating, and the finer
points of scheduling incremental updates will probably bore a business
user. So, how do we let specialists work in their own fields?

Dimensions have an advanced property called Write-enabled and in a
write-enabled dimension, the administrators can change, move, add and
delete members, and move members up and down levels in the hierarchy.
Member property values can also be updated.

� Once the Write-enabled property is set to True, not only does the administrator
have these powers but so do any end-users allocated to cube roles with read/write ac-
cess to the dimension. (This feature is available only with Analysis Services for
Microsoft SQL Server 2000 Enterprise Edition.) For each role, you can control
which members can and cannot be updated. Only Parent–Child dimensions can be
write-enabled.

Adding a category of expense to the Accountdimension in order to hold the
salary figures means that our actions will ultimately modify the structure of

187

Further advanced data modeling techniques

�

the underlying table in the source database; so you may want to take a look
at it before we proceed.

� Not all of the columns are shown here, but there are enough to enable us to spot the
changes that will be made.

Start by opening the Account dimension with the Dimension Editor and
then look at the members of the dimension in the Data tab. Right click on a
member and nothing happens: you cannot make any changes. This is the
behavior we’re about to alter. Now flip to the Schema tab and look at the
advanced properties of the Account dimension. The Write-enabled prop-
erty is set to False: click to select True.

When you look at the Data tab, a message is shown saying ‘Dimension
write-back is unavailable until this dimension is included unmodified in a
processed cube’. Dimension write-back is the process of writing any
changes you make into the table in the source database.

188

Further advanced data modeling techniques

�

In this case simply save and reprocess the dimension to clear this message
in order to proceed. (This will work in most cases and, where it doesn't,
reprocessing the Budget cube is all that is required in addition.) Now if you
right click on a member, a menu pops out.

From this menu you can make changes to the hierarchy, moving members
around the hierarchy using Move Up, Move Down, Indent and Outdent.

Moving these guys around isn’t what we came here for, but just to give you
a flavor of what is possible – indenting, for example, the Total Expense
member makes it a child of Net Sales.

189

Further advanced data modeling techniques

Outdenting it (from its original position) makes it a sibling of Net Income.

� Sometimes when you indent and/or outdent, the order of the members appears to re-
verse (from alphabetical to reverse alphabetical). Fear not, this is only temporary;
the order is restored when the dimension is saved.

Now we come to the option we want for our current task: New Member.
Right click on Total Expenses and select New Member. A choice of Sibling
or Child appears: we want Salary to be a child of Total Expenses. (If we’d
started from, say, Marketing, the new member would be a Sibling.) Choose
Child and a Create Member dialog opens; type in a name – Salary:

190

Further advanced data modeling techniques

�

This dimension, being a Parent–Child dimension, is able to generate the
member key automatically from the sequence in the account_id column in
the Account table in the source database. Click OK

and there’s the new member. It has gained the default summing behavior,
indicated by the + unary operator, which is fine for our cube. Save the
dimension, process it and close the Editor.

Once you’ve reached this stage, the changes you’ve made cannot be
undone except by opening the Editor again and manually reversing them.

Inspect the Data view of the Budget cube with the Cube Editor and the new
member is shown firmly in place, even though there isn’t any data for it
yet.

191

Further advanced data modeling techniques

Just to check that the write back procedure is working, let’s look at the
Account table in the source database:

Yes, it’s here too, which proves that our changes to the dimension have
indeed been written back to the source database.

So, we have successfully set up a dimension such that users can edit dimen-
sional structures.

� Purely for information, everything we’ve done here using Analysis Manager’s
graphical user interface can also be achieved programmatically with an MDX state-
ment that allows you to change dimensions. This is the ALTER CUBE CREATE
DIMENSION MEMBER statement – so while it’s easier to do it graphically as show, it is
always comforting to know that you can also do it programmatically if necessary.

Practical summary

Problem 4: Write-enabled dimensions – allowing users to
add a member to a dimension

1 Use the Dimension editor to examine the members of the Account di-
mension. Using the advanced properties of the Account dimension, set
the Write-enabled property to True. Save and process the dimension.

2 Swap to the data tab. Right click on Total Expenses and select New
Member. Choose Child and, in the Create Member dialog that opens,
type in a name – Salary.

3 Save the dimension, process it and close the Editor.

192

Further advanced data modeling techniques

�

Problem 5: Write-enabled dimensions –
deriving values for a member using formulae

We have members called Cost of Goods Sold and Return in our Account
dimension but there is no data in the cube. Equally there is no information
in our fact table to tell us anything about the cost of goods sold or the
percentage of our products that are returned. We need to derive the values
for these members using formulae – both will be derived as a percentage of
gross sales.

On the face of it, this sounds like much the same process that we demon-
strated as the answer to the third problem in Chapter 14, when we put a
formula in place to generate budget figures. However, this time we don’t
have a handy column in the dimension table that contains the formula. So,
while it’s true that we’ll still be creating a custom member, we will be doing
so in a different way.

We’ll start by determining the formula to generate the cost of goods sold.
We’ll take advantage of the fact that we aren’t dealing with a real company
and make this really simple – the cost of goods sold is deemed to be 10% of
gross sales and the return is 5% of gross sales. However, given the MDX
skills you have already acquired, you could make it as complex as you need
to meet the requirements of your business users.

193

Further advanced data modeling techniques

In the Dimension Editor, looking at the Account dimension, highlight
Account Id and then enable the Advanced Custom Members property as
we did before. This time, as we don’t have a column to hand, select the
‘Create a new column’ option and type in a name for it: we’re using
Custom Formula.

Click on OK.

� That action will have created a new column in the Account table (in the source Ac-
cess database) called Custom Formula.

Save and process the dimension (but don’t leave the editor yet).

Now with the dimension write-enabled (which we did in the last section)
and with custom members also now enabled, we can create a formula for
any member in the dimension. In the Data tab, highlight the Cost of Goods
Sold member and then click in the Custom Member Formula pane in the
bottom right corner of the screen. Enter the formula

[Gross Sales]*0.1

194

Further advanced data modeling techniques

�

and once you move the focus from the formula pane, the Cost of Goods
Sold member acquires the curly f to show it’s derived with a formula.

Now define a formula for the Return member: here’s the formula:

[Gross Sales]*0.05

and we’re done. Save the dimension and call up the Cube Editor and
browse the cube. But what’s this? It looks exactly the same as before –
there’s still no data for Cost of Goods Sold or Return.

And come to think of it, we still don’t have any data for salaries either....
What’s gone wrong?

Let’s address those questions in reverse order. Why is there no salary data?
It’s because this is a budget cube and the fact table from which it takes its
information simply doesn’t contain any salary data.

195

Further advanced data modeling techniques

And why are there no figures for returns or cost of good sold? These figures
are both derived as percentages of the gross sales figure – which gives us
not an answer but another question: why are there no gross sales figures?

Once again, the answer is because we are dealing with a budget cube and it
does not contain any values for gross sales. So let’s summarize what we did
achieve in this step and then we’ll address these final problems.

Practical summary

Problem 5: Write-enabled dimensions – deriving values
for a member using formulae

1 With the Dimension Editor, look at the Account dimension, highlight
Account Id and enable the Advanced Custom Members property. Select
‘Create a new column’ and name it ‘Custom Formula’.

2 Save and process the dimension.
3 In the Data tab, highlight the Cost of Goods Sold member and click in

the Custom Member Formula pane. Enter the formula to calculate Cost
of Goods Sold.

4 Repeat step 3 for the Return member.

Problem 6: Missing data – bringing it in from
other cubes

Most business applications will involve more than one cube. We’ve been
working with the Budget cube but there are also likely to be other cubes to
hand. In our example, the FoodMart2000_MDX3 database contains several
cubes: there are also cubes called HR (Human Resources) and Sales. The HR
cube contains the details of members of staff: their names, positions, the
date they were hired, the store and department in which they work and, of
course, their salaries. The Sales cube contains information about the prod-
ucts, their manufacturers, prices, the department within a store where
they’re on sale, information about each store and details of all transactions
– who bought what when and for how much.

These HR and Sales cubes contain the vital information we need to
complete our Budget cube: HR has salary values and Sales has gross sales
values. So we need to get that data from one cube into another.

196

Further advanced data modeling techniques

To complete our Budget cube we need to bring figures in from other cubes
in the database. The term that describes this process is ‘connected multi-
cube architecture’.

� It is terms like these that can help to justify that salary increase you know you are
worth.

“Well, I don’t know. (Slow head shake). To solve that one we’re going to have to de-
velop a connected multi-cube architecture. As you know, that usually means an ex-
pensive consultant. However, given the right incentive I just might be able to...”

In practice all it means is that we’re able to define a calculation in one cube that ref-
erences data in another cube. (For a small fee, we won’t tell your boss how simple it
is).

To do this we use an MDX function called LookUpCube which works with
any cube within a database. LookUpCube has two parameters; the first is the
name of the cube from which you wish to import data. The second param-
eter is a string that has to evaluate into an MDX expression that refers to a
certain cell in the cube providing the values.

Return to editing the Account dimension where we’ll create formulas for
the gross sales and salary members. This will be much the same as we’ve
just done for cost of goods sold and return, but this time we’ll be using the
new function. Click on the Gross Sales member in the Data view and in
the Custom Member Formula pane we’ll construct the formula. As before,
we’ll build it up a bit at a time. So we’ll start with:

LookUpCube (("[Sales]","(Measures.[Sales],

We’ve given LookUpCube the name of the cube from which it’s to fetch data
– Sales – and have started to specify where in the cube it will find the val-
ues we want. The function requires this information in the form of a string,
hence the inverted commas. So far we’ve told it to look at the Sales
measure.

Next, we must direct it to exactly the same place in the Sales cube as we are
in the Budget cube. The values for gross sales are at intersections of the Time
dimension and the Store dimension so we take the current time and ap-
pend it to the string, like this:

LookUpCube("[Sales]","(Measures.[Sales],
Time.["+Time.CurrentMember.Name+"],

197

Further advanced data modeling techniques

�

We are, in fact, concatenating the string; that is, combining multiple strings
into a single one using the plus symbol. Now we do the same for the Store
dimension and here’s the complete formula:

LookUpCube("[Sales]","(Measures.[Sales],
Time.["+Time.CurrentMember.Name+"],
Store.["+Store.CurrentMember.Name+"])")

Save the dimension and process it. Then process the Budget cube and look
at it with the Cube Editor and, wonderfully, there is now a figure for gross
sales. Equally wonderfully, the formulae for Cost of Goods Sold and
Return now have a Gross Sales value with which to work and also display
values.

These are the figures for 1997.

It’s easy to see that the formula for Cost of Goods Sold is working as it’s
10% of the gross sales figure. We can also see that the figure for Return is
half of that for cost of goods sold, and again we know that’s right because
the formula for Return was 5% of Gross Sales.

198

Further advanced data modeling techniques

Spurred on by this success, we’ll create another custom member formula to
bring the salaries values in from the HR cube in just the same way, using
this formula:

LookUpCube("[HR]","(Measures.[Org Salary],
Time.["+Time.CurrentMember.Name+"],
Store.["+Store.CurrentMember.Name+"])")

Back in the Cube Editor, we can see that now, at last, we have all the values
needed by the cube and its users.

Practical summary

Problem 6: Missing data – bringing it in from other cubes

1 Edit the Account dimension with the Dimension editor. Click on the
Gross Sales member in the Data view and in the Custom Member For-
mula pane, construct the formula to bring in data from the Sales cube.

2 Save the dimension and process it. Process the Budget cube and inspect
it with the Cube Editor.

3 Repeat steps 1 and 2 for the Salarymember, bringing in data from the HR
(Human Resources) cube.

199

Further advanced data modeling techniques

Summary

We’ve brought our cube on a long way in the course of this chapter and the
net effect is a much more flexible cube which should require less mainte-
nance to keep it in shape.

1 We’ve given certain users permission to edit a dimension, making use of
the Write-enable property to do so. This gives users control over aspects
of the data where their expertise is strongest.

2 Then we created some custom members to calculate data that was
needed in the cube. Deriving data from data that’s already in the cube
adds flexibility, giving users the figures they need at their fingertips.

3 Finally we used LookUpCube to pull data from other cubes in the database
into our budget cube. LookUpCube is an advanced and very powerful
function that helps keep your cubes controllable. The LookUpCube func-
tion is an efficient way to bring data from one cube into another, in terms
of both time and effort. It’s easier to manage a range of cubes covering
different aspects of your business data and it also means that data does
not have to be stored multiple times.

Function Requires Returns

LookUpCube Cube name, string expression Values from another cube

200

Further advanced data modeling techniques

Chapter 16

Actions

Resources:
Starting database – FoodMart2000_MDX3
Cube – Sales
MDX samples – CHAP16.TXT

An action, according to the MDX function list in Analysis Services’ help sys-
tem, is an operation that can be initiated by an end user upon a selected
cube or portion of a cube. Right, fine – but what does it mean? This is one
occasion where a ‘for instance’ is worth its weight in help system entries, so
here we go.

Imagine (for instance) that you are a high level analyst browsing through
the data about all of FoodMart’s stores and your present concern is stock
levels in the American stores. You drill down to USA and down again into
Washington state. Browsing around, you see a city with a curious name –
Walla Walla. You didn’t know of the existence of this place and it’s news to
you that FoodMart has a store there, store number 22, in fact. Your curiosity
piqued, you want to know more about this euphonious location. You right
click on Store 22 and from the pop out menu, you select Show Map.

201

This should work from any front-end tool that is well enough integrated
with Analysis Services. It works fine from within ProClarity:

In addition, it works from within the Cube Editor:

202

Actions

Your browser is launched and brings back a map from Yahoo which shows
the location of Walla Walla with a red star, tucked into the south eastern
corner of the state and close to the Oregon border.

� This worked fine when we tested it but, as you can imagine, we can’t guarantee that
Yahoo will continue, in perpetuity, to offer this fine service. If this doesn’t work for
you, try altering the URL string that we show you later on in the chapter to point to
a web address that you know to be operational. It doesn’t have to do mapping in or-
der to demonstrate the general principle that actions can launch browsers.

203

Actions

�

A bit of zooming reveals:

So now you know the whereabouts of Walla Walla, even if you are not yet
aware that it means ‘many waters’ in the Nez Percé tongue.

� Given that, as the screen shots show, it is located in WA, one is left wondering how
“Walla Walla Wa” would translate...

So, that was an Action in... er... action. Actions permit users to remain
within the analysis environment while locating pertinent information, as
in the scenario above, or furthering the process of analysis by involving
others. As another example, imagine you’ve found some interesting piece
of information, perhaps that sales in a particular store have slumped
dramatically. What happens now? You’ll probably do one of several
things, like picking up the phone and calling somebody, or walking down
the hall and talking to someone about it, or sending an email. All these
things take you out of the analysis environment and require you to open
up a separate application or to go and perform some other deed. Actions let
you maintain the flow of analysis: when you reach a point where you find
something interesting you can act upon it instantly with minimal
distraction.

204

Actions

�

An action can, as we’ve said, go and locate information from the web or
from an intranet, and the different kinds of action can launch different
applications and retrieve different types of information. An action can also
bring flexibility to working with cubes. You could, for instance, create an
action that would place an order for an item with your supplier. This action
could be selected if a low stock level was found while browsing stock levels.

MDX is used to define actions and there are several types of action from
which to choose. The map-finding example above is a URL action; there are
six others including HTML actions that execute an HTML script within a
web browser and Data Set actions that will return a multi dimensional set
of data. We’ll take you through one worked example of an action (using
URLs). The other actions are used in much the same way, so we’ll simply
show you how to find them (using a wizard) and leave you to investigate
once you’re familiar with the general idea.

So let’s go behind the scenes to see how the map-finding action was
defined. Look at the Sales cube with the Cube Editor and in the tree pane
you can see an action listed.

Right click on Show Map and select Edit. We’ll walk you through how it
was put together.

� After that, if you want to, you can delete Show Map and re-create it for yourself, us-
ing exactly the same steps.

205

Actions

�

First you choose the object from which you wish to launch the action: this
object is called, somewhat counter-intuitively, the target. There are several
different objects that can be used as targets ranging from the whole cube
through a dimension, level, member, cell or set. In our map-finding
example, we want a right click on any store number at the Store Name level
to act as the target. The object that will act as the target is, therefore, any
member at a level in the cube, so the target is set to ‘A level in this cube’.
Next, we specify the dimension to which the target level belongs – Store –
and the level itself – Store Name. Lastly we specify that it is to be the
members at the chosen level that will act as the target. Then click on Next.

206

Actions

In the second step of the wizard, we choose the action type.

As discussed, it is a URL action. The Sample pane at the bottom of the
screen helpfully shows the sort of syntax that’s required by the chosen
action type: in this case it is a URL string which will be sent to the web
browser.

� The other actions at your disposal are revealed by popping down the combo box.

207

Actions

�

Click on Next and in the next step, the Syntax pane shows the MDX code
that is at the heart of our URL action:

The MDX reads as:

Iif(Ancestor([Store].CurrentMember,[Store].[Store
Country]).Name="USA","http://maps.yahoo.com/py/
Maps.py?Pyt=Tmap&addr=&csz=”+[Store].CurrentMember.Parent.Name
+","+Ancestor([Store].CurrentMember,[Store].[Store
State]).Name,"")

It looks complicated but, like most MDX, as soon as you dismantle it, every-
thing is revealed.

For a start, we’re using “ to indicate literal strings and + as a concatenation
operator (which essentially glues strings together).

Also note we are using four MDX functions. Three of these we’ve seen
before: Iif (Chapter 8), Parent and Ancestor (Chapter 6).

� Just to remind you, the Iif function takes three parameters: a condition to be evalu-
ated, what’s to be done if the condition is met and what’s to be done if it’s not met.
Parent, when given a member, will return that member’s parent, while Ancestor
requires the member in which you’re interested and the level at which you want to
find its ancestor.

208

Actions

�

The new function is Name which will return the name of a level, dimension,
member, or hierarchy. The general syntax is:

<<Dimension>>.Name
<<Level>>.Name
<<Member>>.Name
<<Hierarchy>>.Name

for example:

Store.[Store Country].Name

OK, given that background information, let’s pull the statement apart.
We’ll work from the inside out – so we’ll ignore the Iif and remove it for
now. This leaves us with an intermediate expression:

“Http://maps.yahoo.com/py/maps.py?Pyt=Tmap&addr=&csz=”
+[Store].CurrentMember.Parent.Name+","
+Ancestor([Store].CurrentMember,[Store].[Store State]).Name

When the action is initiated, we want to direct the browser to Yahoo’s
maps. This is the HTTP string to do just that:

http://maps.yahoo.com/py/maps.py?Pyt=Tmap&addr=&csz=

so this will eventually be sent to the browser. However, we happen to
know that Yahoo’s mapping program also requires the name of a city and a
state to be entered so that it can show the correct map. No problem, we can
get this information from the cube. It also happens to need those two sepa-
rated by a comma.

First we need to get the name of the city. Oh, that’s lucky, we just intro-
duced the Name function, so we can use that:

Store.CurrentMember.Parent.Name

Here the Name function returns the name of the parent of the current mem-
ber in the Store dimension. (Checking the hierarchy, shown below, we see
that our current member is at the Store Name level and above it sits the
name of the city at the Store City level).

209

Actions

The Parent function returns Walla Walla, being the parent of Store 22, and
its actual name is returned by the Name function.

So, we’ve got our literal HTTP string and we’ve got the name of the city,
and we concatenated the two using +.

Now for the state:

Ancestor([Store].CurrentMember,[Store].[Store State]).Name

This time the Name function returns the name of the ancestor of the current
member at the Store State level. The ancestor of Store 22 at the Store
State level is Washington. Finally, slot in the comma that’s required be-
tween the city and the state.

So, to recap, our intermediate expression:

“Http://maps.yahoo.com/py/maps.py?Pyt=Tmap&addr=&csz=”
+[Store].CurrentMember.Parent.Name+","
+Ancestor([Store].CurrentMember,[Store].[Store State]).Name

evaluates to a string like this:

Http://maps.yahoo.com/py/maps.py?Pyt=Tmap&addr=&csz=
Walla Walla,Washington

which is sent to the browser.

� This works fine although, in fact, the browser, which is not too keen on spaces in
HTTP, will translate this to:

Http://maps.yahoo.com/py/maps.py?Pyt=Tmap&addr=&csz=
Walla%20Walla,Washington

This is enough to get us to a map of Walla Walla.

Our intermediate expression works fine just as it is; you can try it if you
like. So, why have we complicated it with an Iif statement?

If we compress the entire statement and turn part of it into pseudo code,
this hopefully becomes clear:

Iif(Ancestor([Store].CurrentMember,[Store].[Store
Country]).Name="USA", then do the intermediate statement,
otherwise do nothing)

The Ancestor expression finds the ancestor of the current member in the
Storedimension at the StoreCountry level, uses the Name function to return
its name and then checks to see if that name is equal to USA. In our scenario

210

Actions

�

we only have access to maps of the United States via Yahoo, so the action is
designed to work only for stores in the USA. If the store is not in the United
States, then we do not want anything to happen, which is the purpose of
the “” at the end of the statement.

Here’s the expression again in its entirety:

Iif(Ancestor([Store].CurrentMember,[Store].[Store
Country]).Name="USA","http://maps.yahoo.com/py/maps.py?Pyt
=Tmap&addr=&csz="+[Store].CurrentMember.Parent.Name+","
+Ancestor([Store].CurrentMember,[Store].[Store
State]).Name,"")

OK, that hopefully explains the MDX expression, now back to the wizard.
The last step of the wizard shows a summary description of the action.

If you were building the action from scratch, you’d click Finish after
checking the summary but as we’re just looking – and you may well have
played with the wizard’s options while we’ve been working our way
through (an excellent way to learn) – click Cancel to leave the action in its
original state.

That’s just one illustration of the power of actions and although relatively
simple, it’s a graphic demonstration of how users can be given fascinating
resources at their mousetips.

211

Actions

Chapter 17

Server side color coding

Resources:
Starting database – Coloring Sample
Cube – Budget
Completed sample database – ColoringSample_EndChap17
MDX samples – CHAP17.TXT

Color coding is a means of guiding the users’ investigation of a cube by us-
ing colors to bring attention to certain values. You may have come across
something similar in Excel: in a stock control spreadsheet for instance, as
soon as a value for stock holding drops below a certain level, that value can
be displayed in red, making it much easier to spot and reducing the likeli-
hood of running out of stock completely. Color coding in Analysis Services
is broadly similar – making it easier to spot patterns, trends or a value that
has drifted from the norm.

However, bear in mind that multi-dimensional cubes are typically more
complex than spreadsheets. Each measure can be viewed from the
perspective of many different dimensions. In addition, those dimensions
will commonly have many levels so the potentially problematical values
may be several levels deep in the hierarchy.

Incidentally, color coding has been implemented on the server itself. There
are two reasons for this: the first is that by managing the color coding on
the server, it is available for many front-end client applications. So long as
the client supports color coding (not all do as yet), you’ll be able to make
use of this feature.

Secondly, we want the color coding to work at all levels within a dimen-
sion’s hierarchy. To transfer this to the client would mean sending over
large amounts of data for evaluation each time a drilling down or up opera-
tion took place. The decision to keep color coding on the server keeps the
transfer of data to a minimum, improving response times and reducing
network traffic.

212

Now let’s do some practical work. Imagine you had a calculated measure
that worked out the variance between the budget figures and the actual
figures, in order to gauge performance against the budget. You could
apply a color coding scheme to this value so that high deviations from
budget are distinguished by a red background, medium deviations by
yellow and low by green.

Let’s do this. The Budget cube has a dimension called Category and we
want to see our variance figures as part of this dimension. First, for practice,
create a calculated measure which works out the variance. In the Cube
Editor, right click on the Calculated Members folder and select New Calcu-
lated Member. Set its parent dimension to be Category, the Parentmember
to be All Category and give it the name V%.

For the MDX expression, we want to take the current year’s actuals,
subtract them from the current year’s budget and divide that figure by the
current year’s actuals. This gives us the percentage difference between
actuals and budget. We’ll use the Iif function, as introduced in Chapter 8,
to do this.

The first thing Iif needs is a condition to evaluate. We want to evaluate
two conditions, which we can do by putting an ‘and’ between them. We
want to find out if the cells containing actuals have content and whether
that content is less than or greater than zero. This is the code thus far:

Iif ([Current Year’s Actuals] <> 0 and NOT
IsEmpty([Current Year’s Actuals]),

You could also put these conditions in reverse order, like this:

Iif (NOT IsEmpty([Current Year’s Actuals] and
[Current Year’s Actuals] <> 0),

Next, Iif needs to know what to do if the condition is met (found to be
true). We want it to take the actuals figure, subtract the budget figure from
it and divide the result by the actuals figure. This works out the variance of
the actuals figures from the budget figures. Iif’s third requirement is what
to do if the condition evaluates to false: we want it to do nothing. This is the
complete statement:

213

Server side color coding

Iif ([Current Year’s Actuals] <> 0 and NOT
IsEmpty([Current Year’s Actuals]),
([Current Year’s Actuals] - [Current Year’s Budget]) /
[Current Year’s Actuals], Null)

and here it is in the Calculated Member Builder:

Check the syntax and save the calculated member.

Have a look at the advanced properties for your new calculated member
and, because we want the value to display as a percentage, set the format
string to Percent.

It is worth, at this point, taking a bit of time to browse through the data to
get a feel for what this calculated member is doing.

214

Server side color coding

Using an arithmetical assistant of choice, you can subtract the USA budget
from the actuals, divide the result by the actuals and get the answer of
–41.75%. If you expand USA so that you can see the states and try the same
calculation for, say, Oregon, your assistant should agree with the V% figure
of –21.91%.

The new calculated member is happily working at all levels.

The next step is to add the color coding: inspecting the advanced proper-
ties of your new calculated member reveals a BackColor property.

This is where we get our hands on the paintbox albeit in a rather esoteric
fashion.

215

Server side color coding

Firstly, we’ll introduce a couple of functions that may be familiar to VBA
programmers. One is Abs which returns absolute numbers (numbers shorn
of signs indicating plus or minus values). Its syntax is:

Abs(number)

The second function is RGB. It stands for Red Green Blue and is a means of
controlling colors by specifying their red, green and blue components and
is used like this:

RGB(255,0,0)

for example, is the code for the color red.

Now we’ll discuss the game plan. The result we want is for the background
of the cells containing the variance percentage to change color depending
on the value.

= 0 White
> 0 and < 25 Green
=> 25 and < 50 Yellow
=> 50 Red

We start by finding the maximum value in the set of descendants of the
current member in the Store dimension, and we want this to be done re-
gardless of the current member we’re focusing upon. In other words, find
the descendants of whichever member currently has the focus.

� You may be wondering why we are bothering to find the maximum value of the de-
scendants of the current member. All will be revealed in the fullness of time...

Then we take the absolute number of the current member in the Category
dimension.

� We are taking the absolute value because that is always positive and you’ll notice, in
the expression below, that we perform the comparison with a positive number.

If this number is greater than or equal to 0.5, we want to use red as the back-
ground color. All this is to be wrapped up inside an Iif function, so the
start of our expression looks like this:

Iif(Max ({Descendants([Store].CurrentMember),
[Store].CurrentMember},
Abs([Category].CurrentMember)) >= .5, RGB(255,0,0), //red

216

Server side color coding

�

In English this reads as “If the value of any of the descendants of the cur-
rent member exceeds 0.5 then turn the background of the current member
red.”

Two slashes – // – denote a comment. Here we’re putting in comments to
translate the colors from numbers to more readily understood words as an
aid to easier understanding of the expression. As you start to use MDX for
more and more complex tasks, comments become more and more useful
both to you and to anyone else who has to maintain your code.

We’ll need to nest another two Iif functions inside our expression to ac-
commodate all four of the color options so the expression continues as
follows:

Iif(Max ({Descendants([Store].CurrentMember),
[Store].CurrentMember},
Abs([Category].CurrentMember)) >= .25,RGB(255,255,0), // yellow
Iif(Max ({Descendants([Store].CurrentMember),
[Store].CurrentMember},
Abs([Category].CurrentMember)) > 0, RGB(0,255,0), //green
RGB(255,255,255)))) //white

The expression looks complex in its entirety but once you’ve conquered the
first Iif, it’s mainly a case of repeating the pattern with different values
and not forgetting the final “what to do if the conditions evaluated by all
three Iifs are found to be false” (that’s the RGB(255,255,255) at the end) fol-
lowed by the closing braces for all three Iif functions.

To continue with the practicalities, return to a state where you’re inspect-
ing the advanced properties of the V% calculated member from the Cube
Editor. With the BackColorproperty highlighted, click the ellipsis button to
open the MDX Builder. This is where you construct the expression de-
scribed above. For completeness’ sake, here’s the whole expression:

Iif(Max ({Descendants([Store].CurrentMember),
[Store].CurrentMember},
Abs([Category].CurrentMember)) >= .5, RGB(255,0,0), //red
Iif(Max ({Descendants([Store].CurrentMember),
[Store].CurrentMember},
Abs([Category].CurrentMember)) >= .25,RGB(255,255,0), // yellow
Iif(Max ({Descendants([Store].CurrentMember),
[Store].CurrentMember},
Abs([Category].CurrentMember)) > 0, RGB(0,255,0), //green
RGB(255,255,255)))) //white

217

Server side color coding

Click OK when you’ve finished and the expression is pasted automatically
as the BackColor property. Save the cube and inspect the Data tab. This is
the result: in glorious monochrome it doesn’t pack quite the punch we
hoped for but it glows beautifully on a monitor.

You can drill down into the store hierarchy and the color coding continues
to work:

Or does it? The USA total is –41.75% and is shown in red, but didn’t we
decide to use red as the background color when the variance is over 50%?

Yes, but we also want the color coding to be ‘intelligent’. It may be that
there are poor figures (i.e. figures of 50% or greater) buried deep down in-
side a hierarchy. We want to be able to find them easily so we have con-
structed the MDX expression so that the color of its background is
dependant on the largest figure that is found in all of its descendants. This
explains the part of the expression that reads:

Iif(Max ({Descendants([Store].CurrentMember),
[Store].CurrentMember},
Abs([Category].CurrentMember)) >= .5, RGB(255,0,0), //red

“If the value of any of the descendants of the current member equals or ex-
ceeds 0.5 then turn the current member red.”

218

Server side color coding

So, when we see that the USA total is –41.75% (which is bad enough) the
red color tells us that there is worse lurking below. Somewhere in the lower
levels one value (or more) falls into the 50% or over band. If we drill down,
we can see that the problem lies with Alameda, and going further down to
the Store Name level shows us that this isn’t a store that’s performing badly,
it’s our very own Headquarters.

How ironic. All our stores are managing to at least keep the budget in sight
while headquarters appears to be ignoring it completely.

Summary

We hope we’ve demonstrated the value of color coding in this very simple
example that allows us to identify an area with a problem quickly. You can
imagine in a more complex example in a cube with maybe ten dimensions
and many more levels, finding this problem could be much more chal-
lenging without the aid of color coding.

219

Server side color coding

Chapter 18

More about querying

Resources:
Starting database – FoodMart_MDX1
Cube – Sales_MDX1
MDX samples – CHAP18.TXT

In Chapter 3 we used queries to introduce the general syntax used in MDX.
As we said in that chapter, most of the time people use some form of GUI
tool to query the cube, so they won’t be writing MDX queries by hand.
Nevertheless, we have included this chapter on more advanced querying
for three reasons.

1 Even if you use a front-end tool, you may want to look at the MDX it
generates, so a greater understanding of queries should help you to un-
derstand what the code is doing.

2 There is still a bit of core information that we feel the need to impart about
how MDX works and queries are the easiest way to demonstrate it.

3 We happen to find this stuff generally interesting and we thought you
might too.

Named sets

You can, if such takes your fancy, give names to specific sets and then use
those names in the query.

For example:

With Set [Kids] AS
’{[Product].[All Products].Children}’
SELECT {[Kids]} ON COLUMNS ,
{ [Unit Sales] } ON ROWS
FROM [Sales_MDX1]

220

is functionally the equivalent of:

SELECT {[Product].[All Products].Children} ON COLUMNS ,
{ [Unit Sales] } ON ROWS
FROM [Sales_MDX1]

In this case we’d have to admit that the use of a named set is no major ad-
vantage; however, their use can be a boon to readability in large complex
queries.

CROSSJOIN

By the end of Chapter 3 we had shown you how to write a query that could
display data from two of the dimensions using COLUMNS and ROWS. But what
happens if you (or your users) want to use two dimensions on the same
axis? To demonstrate what we mean by ‘two dimensions on the same axis’
we’ll start off with a simple query that only uses one dimension on each
axis:

SELECT
{ [Time].[1997].CHILDREN } ON COLUMNS ,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Unit Sales])

221

More about querying

which produces a grid like this:

� We’ve included bar charts as well in the screen shots, but the MDX is probably eas-
ier to understand if you concentrate on the grid initially.

222

More about querying

�

But suppose we want to see the products analyzed by time and by state?
Something like this:

What we need to do here is to modify the part of the query that specifies
the rows. For each of the four quarters in 1997 we want a row that shows
each product type for each state. So, for example, if we had two product
types and two states, we’d want to see four rows; with five product types
and five states, we want to see 25 and so on.

OK, how do we do it? In fact there are two syntactical alternatives we can
use in MDX to achieve this. They are:

SELECT
{ [Time].[1997].Children } ON COLUMNS ,
CROSSJOIN ({ [Store].[Store Country].[USA].Children } ,
{[Product].[All Products].Children}) ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Unit Sales])

and/or

223

More about querying

SELECT
{ [Time].[1997].Children } ON COLUMNS ,
{{ [Store].[Store Country].[USA].Children } * {[Product].[All
Products].Children}} ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Unit Sales])

In our example the set

{ [Store].[Store Country].[USA].Children }

returns three members from the Store dimension – CA, OR and WA – and the set:

{[Product].[All Products].Children}

also returns three members – Drink, Food and Non-Consumables.
The results from each set are multiplied together to give the nine rows that
we see.

Of course you can play around with these statements to your heart’s con-
tent. You can, for example, try a crossjoin on the columns:

SELECT
CROSSJOIN ({ [Store].[Store Country].[USA].Children } ,
{[Product].[All Products].Children}) ON COLUMNS ,
{ [Time].[1997].Children } ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Unit Sales])

which works fine, but does result in rather a wide grid:

224

More about querying

You can crossjoin on both at once:

SELECT
CROSSJOIN ({ [Store].[Store Country].[USA].Children } ,
{[Product].[All Products].Children}) ON COLUMNS ,
CROSSJOIN({ [Time].[1997].Children },
{[Customers].[USA].Children}) ON ROWS
FROM [Sales_MDX1]
WHERE ([Measures].[Unit Sales])

As you can see this works fine and the resulting grid proves to us that our
customers only ever buy from our company in their home states.

� Or, perhaps more realistically, it proves that we are using sample data...

225

More about querying

�

Initially you might look at this grid of data and think “It would be really
useful to eliminate those empty cells”, but it turns out that in this case, you
can’t. The reason is that you can only eliminate completely empty rows
and/or completely empty columns and, in this particular grid there aren’t
any rows or columns that are entirely empty; each contains at least one
value somewhere. However, there are times when an MDX query will
return empty rows/columns and then it can be very useful to be able to
eliminate them.

NON EMPTY

In fact, empty columns/rows can be a pain even with simple MDX queries.
For example:

SELECT
{[Customers].[All Customers].Children} ON COLUMNS,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]

produces a graph/grid that is mainly empty:

226

More about querying

for the simple reason that there is no data in the cube for Canada or Mexico.
MDX allows us to specify that we only want to see NON EMPTY columns like
this:

SELECT
NON EMPTY {[Customers].[All Customers].Children} ON COLUMNS,
{[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]

Easy or what!?

OK, try this one. Is this MDX statement going to remove the empty cells?

SELECT
{[Customers].[All Customers].Children} ON COLUMNS,
NON EMPTY {[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]

The answer is “no” because it is only the columns that are completely
empty in the original answer, not the rows. You may now be thinking “So,
wouldn’t something like:

SELECT
NON EMPTY {[Customers].[All Customers].Children} ON COLUMNS,
NON EMPTY {[Product].[All Products].Children} ON ROWS
FROM [Sales_MDX1]

enable me to perform a blanket removal of anything that can be removed?”

227

More about querying

And you’d be absolutely right. This will remove whatever empty rows and
columns there are.

So a query like:

SELECT
{[Customers].[All Customers].Children} ON COLUMNS,
{[Store].[All Stores].Children} ON ROWS
FROM [Sales_MDX1]

228

More about querying

can be ‘tidied up’ dramatically to:

using:

SELECT
NON EMPTY {[Customers].[All Customers].Children} ON COLUMNS,
NON EMPTY {[Store].[All Stores].Children} ON ROWS
FROM [Sales_MDX1]

It is, of course, entirely a matter for you, or your users, to determine
whether hiding empty cells helps or hinders the interpretation of the data.
Sometimes is it vital to see the columns/rows that are empty. However,
MDX does allow you to hide them when you determine that it is
appropriate.

229

More about querying

From top to bottom

Suppose that you are interested in finding out which classes of food sell
best, so you use:

SELECT
{[Product].[Product Family].[Food].CHILDREN} ON COLUMNS
FROM [Sales_MDX1]
WHERE [Measures].[Unit Sales]

This works, after a fashion, but it is awkward to identify the top-sellers.
Modifying the MDX to:

SELECT
{TOPCOUNT([Product].[Product Family].[Food].CHILDREN,4,
[Measures].[Unit Sales])} ON COLUMNS
FROM [Sales_MDX1]

230

More about querying

produces an output like this:

This TOPCOUNT function is worth further investigation, both because it is
fundamentally useful and because we can use it to illuminate another
aspect of how MDX works in general. That means that you can expect to
see something weird appearing shortly.

� Weird, in this instance, means something that is actually totally logical, but ap-
pears counter-intuitive at first.

TOPCOUNT takes three parameters – a set, a number and a measure:

{TOPCOUNT([Product].[Product Family].[Food].CHILDREN,4,
[Measures].[Unit Sales])}

The function finds the four highest values of the measure Unit Sales for
each of the children of the Food member. We can assume that, since we
have only used products and measures to restrict the answer, this finds the
top selling products for the data that is defined by the default members of
the other dimensions. This is, in fact, the case, and since we will be referring
to the answer of this MDX statement later, it is worth noting that the four
top selling products for 1997 in All Stores and for All Customers were, in
descending order:

Produce, Snack Foods, Frozen Foods, Baking Goods.

231

More about querying

�

We can, of course, modify the MDX to give us the first five:

SELECT
{TOPCOUNT([Product].[Product Family].[Food].CHILDREN,5,
[Measures].[Unit Sales])} ON COLUMNS
FROM [Sales_MDX1]

which extends our top-seller list to:

Produce, Snack Foods, Frozen Foods, Baking Goods, Canned Foods.

Nothing weird so far....

232

More about querying

Now suppose we modify the query to read:

SELECT
{TOPCOUNT([Product].[Product Family].[Food].CHILDREN,5,
[Measures].[Unit Sales])} ON COLUMNS
FROM [Sales_MDX1]
WHERE ([Store].[Store Country].[USA].[OR])

This shows us that Oregonians have buying habits that are pretty much
like everyone else’s, except that they happen to favor Canned Foods slightly
over Baking Goods rather than the other way round. True, the figures for
these two product groups are close:

Canned Foods – 4889
Baking Goods – 4810

but this still isn’t weird because we’d naturally expect some variation be-
tween different states.

However, there is another way in which we could express that query,
namely as:

SELECT
{TOPCOUNT([Product].[Product Family].[Food].CHILDREN,5,
[Measures].[Unit Sales])} ON COLUMNS,
{[Store].[Store Country].[USA].[OR]} ON ROWS
FROM [Sales_MDX1]

On the face of it, this MDX statement looks as if it should return exactly the
same data. After all, it uses the same sets and tuples.

233

More about querying

� [Store].[Store Country].[USA].[OR] is a tuple in the first statement and a set
in the second, but that isn’t the issue here.

This is where the weirdness arrives because the answer from this query is
subtly different:

At first sight it looks as if Oregonians now prefer Baking Goods over Canned
Foods; but that can’t be true because the numbers are still the same as be-
fore. It’s the ordering that has changed, implying that Baking Goods is the
fourth most popular group rather than the fifth. But perhaps this is simply
a matter of how the data is being displayed. We can test that by asking for
the top four products with:

SELECT
{TOPCOUNT([Product].[Product Family].[Food].CHILDREN,4,
[Measures].[Unit Sales])} ON COLUMNS,
{[Store].[Store Country].[USA].[OR]} ON ROWS
FROM [Sales_MDX1]

234

More about querying

�

Nope, it’s nothing to do with ordering. So the weirdness has arrived. This
MDX query is apparently asking for the top four best-selling products in
Oregon. But it clearly hasn’t delivered that as an answer because we know
that Canned Foods actually outsell Baking Goods in Oregon. So either
Analysis Services is mis-answering the question, or we are misunder-
standing exactly what this question is asking. And it turns out that the
latter is true, we have misunderstood the question that this MDX statement
asks.

In other words, this MDX query is asking a subtly different question from
the previous one.

OK, so now we need to focus in on just what these two queries are asking.

The first one that we used to examine the buying behavior of Oregonians:

SELECT
{TOPCOUNT([Product].[Product Family].[Food].CHILDREN,5,
[Measures].[Unit Sales])} ON COLUMNS
FROM [Sales_MDX1]
WHERE ([Store].[Store Country].[USA].[OR])

says “Find the five best-selling products in 1997 for All Customers in the
stores in Oregon and then show me the sales figures of those five products
in Oregon.” Which is what it does.

� Remember, the cube has four dimensions – Product, Customers, Time and Store.
The default member for Time is 1997 and for Customers it is All Customers.

235

More about querying

�

This second one (which on the face of it is very similar):

SELECT
{TOPCOUNT([Product].[Product Family].[Food].CHILDREN,5,
[Measures].[Unit Sales])} ON COLUMNS,
{[Store].[Store Country].[USA].[OR]} ON ROWS
FROM [Sales_MDX1]

says “Find the top five best-selling products in 1997 for All Customers in
All Stores and then show me the sales figures of those five products in Or-
egon." Which is what it does.

And, of course, both of these questions are perfectly valid ways of looking
at the data, and so MDX has to have a way to allow you to ask both – which
is what it does.

So now we have two different types of question we can ask about top
sellers, but what you need to know is the overall rule that tells us which
construction to use under what circumstances.

And the answer is that it all comes down to the difference between an axis
like ROWS and the WHERE clause.

If something like:

([Store].[Store Country].[USA].[OR])

appears in a WHERE clause, then it is used to restrict the data that is pulled
back from the cube. If it appears in an ON ROWS clause, it is simply used to de-
termine how the data should be laid out for the user.

Now, in many cases, this distinction is not vital. For example, consider a
simple query like this:

SELECT
{[Time].[1997].[Q1]} ON COLUMNS
FROM [Sales_MDX1]
WHERE ([Measures].[Unit Sales])

The WHERE clause means that the MDX statement is only ever going to work
with data from the Unit Sales measure.

The:

{[Time].[1997].[Q1]} ON COLUMNS

clause means that the MDX statement is only ever going to display the data
for the first quarter of 1997. In this case there is very little functional differ-
ence between the two.

236

More about querying

In fact, you can reverse the tuples/sets to give:

SELECT
{[Measures].[Unit Sales] }ON COLUMNS
FROM [Sales_MDX1]
WHERE ([Time].[1997].[Q1])

which gives the same result – 66,291 units sold of All Products to All Cus-
tomers in All Stores for the first quarter on 1997.

However, in the case of our two ‘weird’ MDX queries, the difference is
vital.

In the first:

SELECT
{TOPCOUNT([Product].[Product Family].[Food].CHILDREN,5,
[Measures].[Unit Sales])} ON COLUMNS
FROM [Sales_MDX1]
WHERE ([Store].[Store Country].[USA].[OR])

the WHERE clause is ensuring that the TOPCOUNT function only operates on
the data from Oregon.

In the second:

SELECT
{TOPCOUNT([Product].[Product Family].[Food].CHILDREN,5,
[Measures].[Unit Sales])} ON COLUMNS,
{[Store].[Store Country].[USA].[OR]} ON ROWS
FROM [Sales_MDX1]

there is no WHERE clause to restrict the TOPCOUNT function to just data from
the Oregon stores, and the ON ROWS clause is simply controlling the way the
data is laid out.

So use the WHERE clause to control which data TOPCOUNT is using to find the
top values.

237

More about querying

Now that was reasonably heavy stuff (if you are new to it) so to lighten it up
a little, we’ll introduce you to BOTTOMCOUNT which does exactly as the name
suggests. So:

SELECT
{BOTTOMCOUNT([Product].[Product Family].[Food].CHILDREN,2,
[Measures].[Unit Sales])} ON COLUMNS,
{[Store].[Store Country].[USA].Children} ON ROWS
FROM [Sales_MDX1]

shows you that the worst selling product group overall is Meat.

And, just because we can’t resist stressing the point (one last time, honest)
about the difference between ON ROWS and WHERE, what would you guess
that the following will do?

SELECT
{BOTTOMCOUNT([Product].[Product Family].[Food].CHILDREN,2,
[Measures].[Unit Sales])} ON COLUMNS,
{[Store].[Store Country].[USA].Children} ON ROWS
FROM [Sales_MDX1]
WHERE ([Customers].[State Province].[OR])

238

More about querying

Look away from your book now and press the ‘mute’ button on your re-
mote if you want to guess before seeing the result...

Not only has the WHERE clause excluded any results for CA or WA, one of the
products ranked in the bottom two has actually changed because Orego-
nians, once more, differ slightly from the herd.

More than two dimensions – PAGES, SECTIONS,
CHAPTERS

In MDX, the ON COLUMNS and ON ROWS clauses specify how your data
appears on a grid with two axes – the columns forming one axis and the
rows the second. But suppose that you want to slice by more than two
dimensions. In that case you can specify up to three additional axes by
name: PAGES, SECTIONS and CHAPTERS.

We can add one axis at a time to a simple MDX query:

SELECT
{[Customers].[All Customers].[USA].Children} ON COLUMNS,
{[Product].[All Products].Children} ON ROWS,
{[Time].[1998].Children} ON PAGES
FROM [Sales_MDX1]

239

More about querying

SELECT
{[Customers].[All Customers].[USA].Children} ON COLUMNS,
{[Product].[All Products].Children} ON ROWS,
{[Time].[1998].Children} ON PAGES,
{[Store],[USA].Children} ON SECTIONS
FROM [Sales_MDX1]

SELECT
{[Customers].[All Customers].[USA].Children} ON COLUMNS,
{[Product].[All Products].Children} ON ROWS,
{[Time].[1998].Children} ON PAGES,
{[Store],[USA].Children} ON SECTIONS,
{[Measures].Members} ON CHAPTERS
FROM [Sales_MDX1]

A couple of points are worth noting about the use of axes.

These are the only five names (or aliases) that you can use to specify dimen-
sions. What if you need more? Well, you can specify up to 128, but for that
you have to use an alternative naming convention which is numerically
based. You can specify axes by number – AXIS(0) for columns, AXIS(1) for
rows, AXIS(2) for pages, AXIS(3) for sections and AXIS(4) for chapters,
AXIS(5) for the next one, AXIS(6) for the next and so on up to AXIS(127).

SELECT
{[Customers].[All Customers].[USA].Children} ON AXIS(0),
{[Product].[All Products].Children} ON AXIS(1),
{[Time].[1998].Children} ON AXIS(2),
{[Store],[USA].Children} ON AXIS(3),
{[Measures].Members} ON AXIS(4)
FROM [Sales_MDX1]

In fact, in Analysis Services, you can even shorten this to:

SELECT
{[Customers].[All Customers].[USA].Children} ON 0,
{[Product].[All Products].Children} ON 1,
{[Time].[1998].Children} ON 2,
{[Store],[USA].Children} ON 3,
{[Measures].Members} ON 4
FROM [Sales_MDX1]

240

More about querying

You can even mix and match:

SELECT
{[Customers].[All Customers].[USA].Children} ON AXIS(0),
{[Product].[All Products].Children} ON AXIS(1),
{[Time].[1998].Children} ON 2,
{[Store],[USA].Children} ON SECTIONS,
{[Measures].Members} ON AXIS(4)
FROM [Sales_MDX1]

What you can’t do, no matter which naming convention you use, is to mess
around with the order in which the names appear. Neither can you skip an
axis so, for example, you can’t leave out Sections and still specify Chapters.

When logic and people collide...

You’ll notice that we haven’t used any screen shots from ProClarity to
show a graphical interpretation of this data. The reason is simple: if you cut
and paste these MDX queries into ProClarity, the user interface doesn’t
display the full set of data.

Now the obvious interpretation is that this is a bug; but it turns out that it
isn’t a bug – it’s a feature. No, really. It is a feature based on the several
years of experience that ProClarity as a company has gained about how
users interact with data coming back from cubes. For example, for many
users the combination of multi-dimensional slicing of data with filtering
tends to produce counter-intuitive results.

That’s what the people at ProClarity say and one of the reasons that we
believe them is that earlier versions of ProClarity did display this data on
screen, using combo boxes to represent the extra dimensions. The
company has actually taken the functionality out because it was causing
grief for users.

Of course, none of the authors of this book works for ProClarity so we haven’t
seen the actual feedback from users that has precipitated this change, but we
know someone who has – Russ Whitney. Not only is he the Vice President of
Research & Development for ProClarity, he is also a contributing editor for
SQL Server Magazine, where he writes the MDX column, Mastering Analysis.

Russ Whitney says:

MDX is a very powerful query language. Much of that power comes from MDX’s
multi-dimensional nature. With a language like SQL you are inherently limited to
rows and columns; functions like sorting, grouping and filtering are tied to items

241

More about querying

that are on the rows. This is not true about MDX. You can sort and filter columns
just as easily as you can rows. Also, you can include more dimensions in your query
result than just rows and columns. With MDX you can call out these other dimen-
sions by their names like pages, sections and chapters or you can just refer to them
by index like Axis(2), Axis(3), etc.

Although all this power is nice, it doesn’t change the fact that analysts and business
decision makers think in terms of rows and columns. In addition, most analytic
tools present data in a two-dimensional manner. Even MDX recognizes this by im-
plying a certain presentation in the syntax. For example, the names pages, sections
and chapters imply a book-style presentation where there is a grid of rows and col-
umns on each page.

Unfortunately what we have found in practice is that there is a conflict between the
pure and orthogonal way that MDX handles n-dimensional results and the way
that most users would expect to have them work in a two-dimensional world. The
best way to demonstrate this is through an example. Let’s take the ever present
FoodMart 2000 Sales cube and run a 3 dimensional query and look at the results.

Select [Time].[1997].Children on Columns,
Non Empty [Customers].[All Customers].[USA].[OR].
Children on Rows,
Descendants([Store].[All Stores].[USA].[OR], [Store].[Store
Name]) on Pages
from Sales

This query displays total unit sales for each quarter of 1997 for each city in Oregon.
The query is paged by each store in Oregon. Furthermore, I have requested that
empty customer cities be eliminated. The result for the first store name (e.g. the first
page) is shown below.

So if I requested to have empty customer cities to be eliminated, why do Albany,
Corvallis, Lebanon, Salem and Woodburn still show up? The reason is that MDX
treats rows the same as any other dimension. What I mean by that is that the key-
word Non Empty applies to all other dimensions returned in the result. In order for

242

More about querying

Albany to be considered empty it would have to be empty on all columns and all
pages. In this example, some of the pages contain data for Albany and some don’t.

This same effect applies to all types of sorting and filtering in MDX. Let’s say you
wanted to see the top 10 customers for each state. It might seem like pages is an obvi-
ous way to separate each state.

Select {[Unit Sales]} on Columns,
TopCount([Customers].[Name].Members, 10,
[Unit Sales]) on Rows,
[Store].[Store State].Members on Pages
from Sales

This query returns the following result for the first state:

How can the top 10 customers have no Unit Sales? The answer is that there is no
way for each page to have a different set of rows (or a different order for the rows).
MDX determines the top 10 customers overall and displays the unit sales for each
state on each page.

This MDX behavior would be more intuitive if the result was displayed in 3 dimen-
sions. For example, a 3d bar chart or a 3d scatter chart. But what happens when you
need to display a 4 dimensional result? It can be done through color or other attrib-
utes but charts like this are very difficult to read.

Because of the issues described here, ProClarity chose not to use the pages, sections,
chapters and other axis possible in MDX queries. If you request a paged result in
ProClarity (we call it a slicer) we execute an independent 2 dimension query for
each change. This ensures that filtering and sorting in combination with “paging”
to work as most users would expect.

In essence this means that ProClarity allows you to create a user interface
that will let you see the top ten customers for each state. While this is not a

243

More about querying

‘Teach you how to use ProClarity’ book, in this one instance it seems worth
showing you how.

Open the Sales cube from FoodMart 2000. Open the dimensions pane,
drag Measures into the Columns box (bottom of the screen) and then use
the tabbed area at the top of the screen to select Measures and make sure
that Unit Sales is selected.

244

More about querying

Then add Customers to the Rows box, select the Customers tab, right click
on All Customers and make the following selection:

245

More about querying

Now click on the Filter button and in the Advanced tab, set up the
following:

246

More about querying

To take care of the third axis, find Store in the Background box, right click
on it and select as shown:

247

More about querying

and then go to the Store tab, right click on All Stores and select as follows:

248

More about querying

As you select each state from the combo box, you see what users seem to
intuitively expect, which is the top ten customers from each state.

� Note that data only exists for CA, WA and OR.

Every time you make a selection from the combo box, ProClarity is gener-
ating a new MDX statement for the particular selection you make and
sends that to the cube. You can, of course, use the MDX editor to see that
MDX.

For WA it looks like this:

SELECT
{ [Measures].[Unit Sales] } ON COLUMNS ,
{ TOPCOUNT({ DESCENDANTS([Customers].[All Customers],
[Customers].[Name]) }, 10, ([Measures].[Unit Sales])) }
ON ROWS
FROM [Sales]
WHERE ([Store].[Store State].&[WA])

249

More about querying

�

For CA, like this:

SELECT
{ [Measures].[Unit Sales] } ON COLUMNS ,
{ TOPCOUNT({ DESCENDANTS([Customers].[All Customers],
[Customers].[Name]) }, 10, ([Measures].[Unit Sales])) }
ON ROWS
FROM [Sales]
WHERE ([Store].[Store State].&[CA])

Summary

There’s a range of additional features that you can add to MDX queries, the
main ones are covered here.

In addition, it is worth remembering that MDX is a rigorous language that
abides by a precise and logical set (if you’ll pardon the expression) of rules.
The better you understand how MDX works, the more you can use its
power.

Summary of the book

We hope you get as much fun out of MDX as we, in our various ways, have
already done.

250

More about querying

Appendix 1

Sample files

Where and what are the sample files?

There is a folder in the root directory of the CD-ROM called MDXBook and in
here you’ll find three types of file:

.CAB

.MDB

.TXT

CAB files

A .CAB file is the standard archiving format that Analysis Services uses to
back up databases. It contains everything required in order to rebuild an
Analysis Services database. When you restore a .CAB file with Analysis
Services, the result is a database containing one or more cubes. Given a stan-
dard installation of Analysis Services, all the files pertaining to both database
and cubes will be located, after restoration, in C:\Program Files\Microsoft
Analysis Services\Data\DatabaseName; but your mileage may vary.

If you have been using Analysis Services for any length of time it is highly
likely that you know how to restore these files using Analysis Manager, but
just in case you don’t we’ve included a step-by-step guide to the process
below. However, before you restore them, please bear in mind that these
databases are not meant to represent real operational OLAP cubes. There
are quite a few of them and they have often been developed to illustrate a
particular point, so they are not necessarily examples of good overall OLAP
cube design. In addition, they have not been rigorously checked out to
ensure that they will not interfere with existing operational systems so they
are provided without any guarantees at all. We recommend that you install
them on a test system, preferably on a stand-alone machine; we actively
discourage you from installing them on an operational server.

251

Many of the chapters in this book contain practical examples and we
encourage you to work through them. In case you have any problems, we
have also supplied five .CAB files which contain the completed practical
work at different stages through the book. So if you get stuck at any point,
you can always restore the relevant completed database to see a working
example. The only point to bear in mind is that restoring from these .CAB
files will create databases of the same name as the originals and which will,
of course, overwrite them. So if you have already completed any work you
might want to create an archive of that before restoring from one of our
sample .CAB files.

MDB files

When restored from its .CAB file, each database will be pointing to a data
source file containing the original data from which the cube is derived. The
.MDB files (Microsoft Access format) on the CD-ROM contain this data.

TXT files

In the same folder you will also find a series of text files called, for example,
CHAP8.TXT. These contain all of the MDX queries and/or expressions that
we have used in the appropriate chapter. They are there so that you try the
MDX for yourself by cutting and pasting it into any front-end tool that you
want to use – for example, ProClarity.

When to use which files

At the start of each chapter we name the .CAB file that you need to restore in
order to work through the examples, the cube you’ll need and the .CAB file
you can restore if you want to see the completed examples. Finally, we tell
you where the MDX samples are located. For example, the resources for
Chapter 5 are:

Starting database – FoodMart2000_MDX1
Cube – Sales_MDX1
Completed sample database – FoodMart2000_EndChap7.CAB
MDX samples – CHAP5.TXT

252

Appendix Sample files

How to manage the files

As we said above, all of these files are on the CD-ROM in a folder called
MDXBook. Since these are on a CD-ROM they are, of course, read-only, so
you’ll need to copy them to a hard disk somewhere before you start.

We recommend that you copy all of the files in this folder to your PC; not
only that, we highly recommend that you create a folder called MDXBook in
the root of drive C:\ and place the files in there (in other words, in a folder
called C:\MDXBook).

Now this may all sound a little control-freakish of us and of course you are
free to put the files wherever you like. However, the reason we are so
specific about location has to do with the relationship between an OLAP
cube and its original source of data.

When you create an OLAP cube you obviously have to supply it with a
source of data, and so the cube stores a pointer to that data source. If you
create a .CAB file from an OLAP cube, then that .CAB file also includes the
same pointer information. So it follows that when you restore a .CAB file,
that self-same pointer is restored. Now, we are supplying you with a set of
.CAB files, so when you restore from them you are also restoring all of those
pointers. When we built the .CAB files we did so from a folder called
C:\MDXBook so if you use the same folder on your machine, you should be
able to restore any .CAB file and it will be able to locate and use the correct
data file.

If you find that you want/have to use another folder name, then you can
still use the instructions in the rest of this appendix; simply substitute the
folder name of your choosing. Once the databases have been restored from
the .CAB files, you’ll have to manually reset the pointer to the new location
of the data source. This is described below in the section headed “Data
Sources”.

Step-by-step guide to restoring an Analysis
Service Database (containing one or more
OLAP cubes) from a .CAB file

We’ll assume that you have copied the files from the CD-ROM to a folder
called C:\MDXBook. Since the files have been copied from a CD-ROM, they
will be marked as read-only in the folder on your machine. Highlight all of
the files in C:\MDXBook, right click and uncheck the box labelled Read-only.

253

Appendix Sample files

Fire up Analysis Services and in the Analysis Manager tree pane, right click
on the server to which the database is going to be restored and choose the
‘Restore Database’ option.

Navigate to the appropriate .CAB file.

254

Appendix Sample files

Confirm that you want to perform the restore.

Watch the process proceed before your eyes and finally click on the close
button.

It really should be that simple and it has been when we’ve tried it. If we
find that people are having any problems with the files on the CD-ROM,
we’ll post help on the website:

www.penguinsoft.co.uk

255

Appendix Sample files

Data sources

As we have said, databases in Analysis Services point to a data source file
(which can be an Access .MDB file, as is the case for ours, or whatever). If you
get a message when you try to edit a cube that says the data source cannot
be accessed, or if you have put the files in a location other then C:\MDXBook,
then you’ll need to check that the pointer to the location of the data source
is correct. To do this, right click on the data source for the cube, choose Edit:

256

Appendix Sample files

and the Data Link Properties dialog opens. In the Connections tab, under
‘Select or enter a database name’, check that this is pointing to the correct
file and edit it if not.

257

Appendix Sample files

Appendix 2

ProClarity

Installing ProClarity and connecting it to a
cube

Place the CD-ROM into the drive on your computer and it should automat-
ically run the ProClarity setup software. If it doesn’t, inspect the contents of
the CD-ROM, find the file called SETUP.EXE and click on it to run it. A dialog
opens up which allows you to see the documentation, which includes the
system requirements and an extensive Getting Started guide. It also allows
you to install ProClarity if you so desire.

When ProClarity is fired up, it first asks you what you want to open. Select
‘Cube for browsing’ and click OK.

258

Now identify the server where your cube sits and click OK.

Navigate to the cube you want, highlight it and click OK.

259

Appendix ProClarity

The last question is how you wish to view your data; it doesn’t matter too
much what you pick here as once you’re looking at the data you can swop
between representations very easily and at will.

If you want to choose a view to use as the default, click the ‘Use as default
view’ box before you make a selection. Next time you open ProClarity, you
won’t see this step and your data will automatically be shown in your
chosen view.

ProClarity also supplies various pieces of documentation about the soft-
ware and how to use it. For a basic get-you-going guide, check out the file
entitled GettingStartedGuide.pdf; you can navigate to it from the installa-
tion software or simply search for it on the CD-ROM.

260

Appendix ProClarity

Using ProClarity’s MDX Editor

To open ProClarity’s MDX editor, click View on the main menu and select
‘MDX Editor’.

The top pane is where you construct MDX code. You can either type it in or
build it by making selections from the panes below where you’ll find the
hierarchy of the cube with all its members on the left and the whole range
of MDX functions, categorized by type, on the right.

You can check the accuracy of your code with the ‘Test MDX’ button,
Format it into lines of code (so that it’s more readable than when shown as
one long string) and finally Execute it.

261

Appendix ProClarity

Index

A
Abs 216
actions 201–11

choosing target 206
defined 201
link to browser 202, 209
placing orders with 205
URL 207
uses of 204

aggregate functions 154
aggregations 8–9, 24, 27

default behavior 173
aliases 240
All level 41

absence of 42
default member 42, 128
missing 128

ALTER CUBE CREATE DIMENSION MEMBER
192

ampersand (&) 34, 180, 182–4
Analysis Manager 65, 143
Analysis Services 4
Ancestor 94

arguments 94
averages 101–3
Avg function 103–4, 111
brute force approach 103
moving 110–118

Avg 103–4, 111
axes 240
AXIS 240

B
BackColor 215, 217
BOTTOMCOUNT 238
braces 54
brackets 53

in code generation tools 54
budget calculations 179

C
CAB files 251

restoring 251
calculated measures 58, 71, 86, 88

performance 58
Calculated Member Builder 72–3, 214
calculated members 58, 70, 101

creating 72–4
calculations

for members 178
cells 3, 27

current 61–2
relative referencing 62–4
unique names 60

CHAPTERS 239–40
Children 47, 82, 108

compared with Parent 84
limits 85

closing period 105
ClosingPeriod 106
color coding 212–19

application of 213
client support 212
intelligent 218

colors 216
COLUMNS 221
comments 217
connected multi-cube architecture 197
Count 99, 103, 121–2
Cousin 96
CROSSJOIN 221–5
cube

looking at data in 68–9
Cube Browser 66

format string 123
Cube Editor 39, 72
Cube Role Manager 144
cube roles 141

default 141
cubes

compared with spreadsheets 212

262

complexity 6
default behavior 164
five-dimensional 6
looking at data in 65–8
three-dimensional 5
two-dimensional 3

curly braces 55, 57
current cell 59–62
CurrentMember 61, 102, 120
Custom Members 178–82

defining 179
custom order

creating 168–71
Custom Order 164–7
custom rollup 173–7

D
data

from other cubes 196–8
in other cubes 186
missing 196–9
multi-dimensional 2
sources 256–7
viewing 65–9

data analysis
snapshot 99–109

data modeling
advanced 162–85

default measures 48, 136
default members 41–2

All level 128
custom 129–33

dynamic 134–5
defining 129–33
LastChild and 133
missing data 134
setting 128–37

desc_flags 92
descendants 91
Descendants 90–2, 102, 120

reasons for using 108
Dimension Editor 130, 133
dimension names

syntax 53
dimension security 140–1

using 141–9
dimension table 156

unique identifiers in 157, 160, 167
dimension write-back 188
dimensions 2, 27

adding members 187–91
characteristics of 26

default member 23–4
default members 23, 128
hierarchical 11
incremental updating 146
maximum number of 4
ordered 129
restricted 147
same axis 221
write-enabled 186–96
Write-enabled property 187

Distinct Count 151–5
restriction to measures 152

divide operator 103, 121
division 103
double counting 152

E
empty rows and columns 226, 228–9
expressions 31, 34, 58–9

parameters 58
value returned 58

F
family tree see hierarchy
Filter 119–20, 135, 143
filters 119–27
FirstSibling 95
FoodMart database 35
foreign key 161
format string 123, 214
formulae 193–94
FROM 39–49
front-end

interface options 45
link to browser 202
numeric display format 123

functions
arguments 90
nesting 84

H
hierarchal information 157
hierarchies 7–9, 27

as a family tree 80
navigating 80–98
unbalanced 159

HTTP string 209–10
hypothetical values 173

I
Iif 116, 209–10, 213

nested 116

263

Index

Immediate If 116
indenting 189
inverted commas 147
IsEmpty 134
Item 105–6, 135

L
Lag 64, 112, 115
LastChild

default members and 133
LastSibling 95

default members and 129
Lead 65
Level 117
levels 10, 27
All 10
leaf 10
members 10

LookUpCube 197

M
Max 107
MDB files 252
MDX

comparison with SQL 29–30
expressions 31
front-ends 36
position in OLAP cube 30
queries 31
software generated 34, 184
syntax 53–7
uses of 30

measures 2, 27
behaving like dimensions 24–5
calculated 71, 86, 88
differences from dimensions 26
Distinct Count 152
maximum number of 4
properties 26

Member Key Column 166, 184
member keys 182–4
Member Name Column 166, 184
member names

syntax 53
member properties 138–9

custom orders and 168
defined 138
querying 139
using 141–9

members 27
adding to dimensions 187–91
calculated 58, 70–1, 101

custom sort order 168–71
default sort order 164
defined 2
deriving values using formulae

193–6
NULL 85
properties 26–7

Members 117, 142
missing data 196–9

filling in 178–81
moving averages 110–18

complex 115–17
simple example 111–14
smoothing effect 111

N
naming conventions 11–12

short cuts 12
Nasdaq index 110
NextMember 63
NON EMPTY 226–9
NOT 135
NULL members 85
numeric display setting 123

O
OLAP cubes

defined 2
ON COLUMNS 39–49
ON ROWS 236, 238
OpeningPeriod 107
Order By 165
outdenting 190

P
PAGES 239–40
ParallelPeriod 76

parameters 76
Parent 83

compared with Children 84
limits 85
members and 84
tuples and 84

Parent–Child dimensions 156–61
write-enabled 187

parent–child relationships 82
performance

Distinct Count 154
PeriodsToDate 77
permissions 141
PrevMember 62

multiple 64

264

Index

primary key 161, 167
ProClarity 33, 86, 258–61

calculated members 74
connecting to cube 258
default view 260
displaying data as a grid 94
installing 258–60
MDX Editor 33, 261
queries and 241
Russ Whitney 241
user interface 32

Properties 139, 142
pseudo-code 101–2

Q
queries 31, 35–52

advanced 220–50
components 39
data returned 36
more than two dimensions 239–40
sorting results 230–8
using sets in 56
writing 33–4

quotation marks see inverted
commas

R
range operator 112
relative cell referencing 62–4
RGB 216
roles 141

creating 143
editing 144
missing data 149
read/write access 187
testing 148

ROWS 221

S
sample data 1–28
sample files 251–7

location 251
location of 253
managing 253
restoring 253–5
when to use 252

SECTIONS 239–40
security

optimistic 145–6
pessimistic 145–6

SELECT 39–49, 55
separators

syntax 54
server side color coding 212–19
sets 16, 25, 27, 39

definition 17, 25
differences from tuples 18–20, 22
named 220
syntax 55

Siblings 95
siblings 95
slicer 52
snapshot 101
snapshot data analysis 99–109
solve order 173
SQL, comparison with MDX 29–30
strings

concatenating 198, 208
converting to numbers 142

Sum 77, 102
syntax

dimension names 53
member names 53
separators 54
sets 55
tuples 54

T
Tail 105, 135
targets 206
tilde 173
time-series analysis 65
TOPCOUNT 231, 237

parameters 231
tuples 14, 25, 27, 39

compared with spreadsheets 15
defined 14, 16, 23, 25
differences from sets 18–20, 22
dimensionality 19
hierarchies and 24
members in 23
pronunciation 15
separating members 55
syntax 54

TXT files 252

U
unary operators 173, 176

assigning to dimensions 174
default 191
solve order 173
storing 174

265

Index

V
Val 142
values

comparing 69–76
deriving 193
incorrect 100
to date 77

VBA see Visual Basic for Applications
Visual Basic for Applications 142

W
web sites, links to 203, 205
WHERE 50–1, 236

multiple dimensions 51
restricting TOPCOUNT 237

Whitney, Russ 241

Y
YTD 77

266

Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

